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Selected Publications

Our group develop new electromagnetic wave sources 
using a high energy electron beam. In the UVSOR-III electron 
storage ring at the Institute for Molecular Science, a 750-MeV 
electron beam can be generated. Electromagnetic waves in a 
wide frequency range from ultraviolet waves to gamma-rays 
are emitted by interacting the electron beam with magnetic 
fileds and lasers.

Laser Thomson (Compton) scattering is a method to gen-
erate a high energy gamma-ray by the interaction between a 
high energy electron and a laser. We have developed ultra-
short pulsed gamma-rays with the pulse width of sub-ps to ps 
range by using 90-degree laser Thomson scattering (Figure 1). 
We applied this ultra-short pulsed gamma-rays to gamma 
induced positron annihilation lifetime spectroscopy (GiPALS). 

A positron is an excellent probe of lattice defects in solids and 
of free volumes in polymers at the sub-nm to nm scale. 
GiPALS enables defect analysis of a thick material in a few 
cm because positrons are generated throughout a bulk material 
via pair production. Our group is conducting research on 
improving the properties of the material by using GiPALS.

Figure 1.  Schematic illustration of 90-degree laser Thomson scattering.
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1.  Gamma-Induced Positron Annihilation 
Lifetime Spectroscopy (GiPALS)

Positron lifetime spectrum is calculated by measuring the 
time difference between a reference signal and a detector 
output for the annihilation gamma-rays, which is emitted when 
a positron annihilates with an electron inside material. A 
reference signal is the output of a photodiode located near the 
injection position of a laser. A BaF2 scintillator and a photo-
multiplier tube is utilized to detect the annihilation gamma-
rays. Two detectors are arranged at 180 degrees because two 
annihilation gamma-rays are generated at 180-degree direc-
tion. The annihilation gamma-rays are generated to whole 
solid angle. Therefore array detectors are effective to increase 
the count rate of the annihilation gamma-rays and to reduce 
the measurement time. We have developed the array detector 
using 10 detectors with a help of Equipment Development 
Center (Figure 2).

Figure 2.  Positron lifetime measurement system using 10 detectors.

Users can currently utilize GiPALS at BL1U in UVSOR-
III. A result of defect analysis for a GAGG scintillator was 
published in 2020.1)

We plan to change the laser injection position to increase 
the ultra-short pulsed gamma-ray intensity in the next fiscal 
year. In the current laser injection position, the opposite side 
of the laser injection window is the vacuum duct. Thus, the 
laser hits the vacuum duct and generates gas. This gas induces 
the background gamma-rays, which is generated by the inter-
action with an electron beam. As a result, the laser cannot be 
tightly focused and therefore the intensity of the gamma-ray is 
weak. The laser can be focused down to few tens of micro-
meters at the new laser injection position. We estimate that the 
intensity of the gamma-rays will be increased more than 20 
times.

On the other hand, we are planning to develop other mea-
surement technique for the annihilation gamma-rays, such as a 
three-dimensional distribution imaging technique for defects, 
spin polarized positrons generated from circularly polarized 
gamma-rays, and age-momentum correlation (AMOC).

2.  Short Wavelength Optical Vortices

An optical vortex is an electromagnetic wave with a 

helical phase structure. When an optical vortex beam is viewed 
in a plane transverse to the direction of propagation, an 
annular intensity profile is observed due to the phase singu-
larity at the center axis. An important consequence of the 
optical vortex is that it carries orbital angular momentum 
(OAM) due to the helical phase structure.

While fundamental and applied research on optical vorti-
ces using visible wavelength lasers is widely studied, much 
less has been done in ultraviolet, X-rays, and gamma-rays 
energy ranges. We have proposed for the first time a method to 
generate a gamma-ray vortex using nonlinear inverse Thomson 
scattering of a high energy electron and an intense circularly 
polarized laser.2) In our method, the circularly polarized laser 
is important because the helical phase structure arises from the 
transverse helical motion of the electron inside the circularly 
polarized laser field. When peak power of a laser achieves 
terawatt class, high harmonic gamma-rays are generated. Only 
gamma-rays more than the first harmonic carry OAM. High 
harmonic gamma-rays show the annular intensity distribution 
due to this characteristic.

There are few facilities in the world, where can carry out 
the experiment for the nonlinear inverse Thomson scattering 
using an intense circularly polarized laser in terawatt class. 
We carried out the experiment at Kansai Photon Science 
Institute in Japan, where a 150 MeV microtron and a petawatt 
laser are available. Although we were not able to achieve the 
measurement of an annular intensity distribution of high 
harmonic gamma-rays, we plan to continue the experiment 
this year.

On the other hand, optical vortices in the ultraviolet 
wavelength range can be generated using a helical undulator. 
Similar with a nonlinear inverse Thomson scattering, an 
electron obeys a helical trajectory inside an undulator. There-
fore, high harmonic radiation emitted from a helical undulator 
forms the helical phase structure.

Generation of an optical vortex from a helical undulator 
has been demonstrated at UVSOR-III. Recently, we newly 
revealed that undulator radiation with the phase structure can 
be generated from an elliptically polarized undulator. We 
derived the analytic expressions for the emitted electric fields 
were fully derived and the radiation’s phase structure was 
found to change according to polarization. Average phase 
gradients of the undulator’s radiation were measured using a 
double slit interferometer. The measured phase gradients of 
the first through third harmonics were compared with the 
calculated results. The results were submitted to the journal.
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