Physical Chemistry I

When the binding energy of an electron is smaller than the energy of irradiated X-ray, an electron is emitted from its atomic orbital as a photoelectron and a hole is left. When a hole is produced in an inner-shell orbital, it is filled by an electron from an outer-shell orbital and the energy equivalent to the energetic difference between two orbitals is emitted as X-ray. Since the wavelength of X-ray emitted by this process is characteristic to the elements, one can identify the kinds of elements.

Analyzing crystals are used for the spectroscopic measurements of emitted X-ray. Consider the reflection of two parallel rays of the same wavelength by two adjacent planes of a lattice of analyzing crystal (Figure). When the path-length difference is an integer number of wavelengths $(n \lambda)$ at a certain glancing angle (θ), the reflected waves are in phase and interfere constructively. As a result, a reflection peak appears and the wavelength of X-ray can be determined.

Answer the following questions. Numerical answers should have two significant figures. Show the calculation processes. Use the values of the light speed $c\left(3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)$ and the Planck constant $h\left(6.6 \times 10^{-34} \mathrm{~J}\right.$ s $)$. Use the relationships of $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}, \sin 35^{\circ}=0.57$, \sin $70^{\circ}=0.94, \sin 55^{\circ}=0.82$, and $\sin 110^{\circ}=0.94$, if necessary.

I-a
Answer the name of the emitted X-ray.

I-b

Consider $\mathrm{K} \alpha_{1}$ line of Cr atom. $\mathrm{Cr} \mathrm{K} \alpha_{1}$ line is emitted by the transition of an electron from L-shell ($2 \mathrm{p}_{3 / 2}$) to K-shell (1s). The binding energies of these orbitals are 575 and 5989 eV , respectively. Find the energy of $\mathrm{Cr} \mathrm{K}_{1}$ line in keV .

I-c

Find the wavelength of $\mathrm{Cr} \mathrm{K}_{1}$ line in nm .

I-d

Express the path-length difference ($n \lambda$) using the spacing between the layers (d) and the glancing angle (θ).

I-e
Answer the name of the relationship in I-d.

I-f
$\mathrm{Cr} \mathrm{K} \alpha_{1}$ line shows the first-order ($n=1$) peak at $2 \theta=70^{\circ}$ by using the $\mathrm{LiF}(200)$ analyzing crystal having d of 0.20 nm . Find the wavelength of $\mathrm{Cr} \mathrm{K} \alpha_{1}$ line in nm .

I-g

Si $\mathrm{K} \alpha$ line shows the first-order $(n=1)$ peak at $2 \theta=110^{\circ}$ by using the polyethylene terephthalate (102) analyzing crystal having d of 0.44 nm . Find the wavelength and energy of $\mathrm{Si} \mathrm{K} \alpha$ line in nm and keV , respectively.

I-h
$\operatorname{LiF}(200)$ analyzing crystal is used for the identification of elements having larger atomic numbers compared to K atom. Describe the reason why the poly(ethylene terephthalate) (102) analyzing crystal is used for the identification of Si atom.

Physical Chemistry II

II-a
Fill in the blanks (1) to (6) with appropriate words, phrases, numbers, or formulae.

We first consider an ideal gas A whose amount is n_{A} (in units of mol) on the basis of thermodynamics. The volume of A is reversibly changed at a constant temperature T_{A}. The small work done on $\mathrm{A}, \mathrm{d} W$, during an infinitesimal volume change in $\mathrm{A}, \mathrm{d} V$, is expressed using $\mathrm{d} V$ and P_{A} (the pressure of A) as (1). Thus, when the volume of A is reversibly changed from $V_{\mathrm{A} 1}$ to $V_{\mathrm{A} 2}$, the work done on A, W_{12}, is given by using the gas constant $R, n_{\mathrm{A}}, T_{\mathrm{A}}, V_{\mathrm{Al}}$, and $V_{\mathrm{A} 2}$ as follows:
(2).

The free energy of A changes due to the work W_{12}. By using the internal energy U, the entropy S, and the temperature T, the Helmholtz free energy F is given as $F=U-T S$. When the amount of A is kept constant, the internal energy depends only on the temperature. Thus, the entropy change in A , ΔS_{12}, due to the foregoing volume change from $V_{\mathrm{A} 1}$ to $V_{\mathrm{A} 2}$ is given by \square (3).

Next, let us consider the above-noted thermodynamic process on the basis of statistical mechanics. By using the number of distinguishable states Ω, the entropy S is given as $S=k \log _{e} \Omega$. Here, k is the
(4) constant, and e is the base of the natural logarithm. k is rewritten using R and the Avogadro constant N_{A} as $k=$ (5)

When the number of distinguishable states of the ideal gas $\mathrm{A}, \Omega_{\mathrm{A}}$, is counted, the particles of A are indistinguishable. For comparison purposes, we here consider a fictitious ideal gas, A^{\prime}, whose particles are distinguishable. The number of particles of A, N, is the same as that of A^{\prime}. When the number of distinguishable states of A^{\prime} is defined as $\Omega_{\mathrm{A}}, \Omega_{\mathrm{A}}$ is given by using N as $\Omega_{\mathrm{A}}=(6) \cdot \Omega_{\mathrm{A}}$. Thus, the partition function of $\mathrm{A}, Q_{\mathrm{A}}$, is given by

$$
\begin{equation*}
Q_{\mathrm{A}}=\square \cdot\left(\sum_{j} \mathrm{e}^{-\frac{\varepsilon_{j}}{k T_{\mathrm{A}}}}\right)^{N}=\left(\text { (6) } \cdot q_{\mathrm{A}}^{N}\right. \tag{i}
\end{equation*}
$$

$\mathcal{\varepsilon}_{j}$ in Eq. (i) is an energy level, and $q_{\mathrm{A}}=V_{\mathrm{A}}\left(2 \pi h^{-2} m k T_{\mathrm{A}}\right)^{3 / 2}$ is the individual atomic partition function. Here, h is the Planck constant, m is the mass of the particle of A, and V_{A} is the volume of A.

II-b
By using Q_{A}, the entropy of $\mathrm{A}, S_{\mathrm{A}}$, is given as

$$
\begin{equation*}
S_{\mathrm{A}}=\left(\frac{\partial k T_{\mathrm{A}} \log _{\mathrm{e}} Q_{\mathrm{A}}}{\partial T_{\mathrm{A}}}\right)_{V_{\mathrm{A}}} \tag{ii}
\end{equation*}
$$

Derive the following equation using Eqs. (i) and (ii):

$$
\begin{equation*}
S_{\mathrm{A}}=k \log _{\mathrm{e}}\left[\frac{1}{N!} q_{\mathrm{A}}^{N}\right]+\frac{3}{2} N k \tag{iii}
\end{equation*}
$$

II-c
Using Eq. (iii), calculate S_{A} (in units of $\mathrm{J} \mathrm{K}^{-1}$) at $q_{\mathrm{A}}=6.0 \times 10^{30}$ and $N=6.0 \times 10^{23}$. Use the following approximations for the calculation: $R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, N_{\mathrm{A}}=6.0 \times 10^{23} \mathrm{~mol}^{-1}, \log _{\mathrm{e}} 10=2.3$, and $N!\sim(N / \mathrm{e})^{N}$.

II-d

By using Eq: (iii), derive an equation for the entropy change ΔS_{12} when the volume of A is changed from $V_{\mathrm{A} 1}$ to $V_{\mathrm{A} 2}$ at a constant temperature T_{A}. Confirm that the derived equation for ΔS_{12} is the same as (3) in II-a when the amount of A is n_{A}.

