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RESEARCH ACTIVITIES
Life and Coordination-Complex Molecular Science
Department of Life and Coordination-Complex Molecular Science is composed of two divisions of biomolecular science, two 

divisions of coordination-complex molecular science, and one adjunct division. Biomolecular science divisions cover the 

studies on functions, dynamic structures, and mechanisms for various biomolecules such as sensor proteins, membrane-

anchored proteins, biological-clock proteins, metalloproteins, glycoconjugates, and molecular chaperone. Coordination-

complex divisions aim to develop molecular catalysts and functional metal complexes for transformation of organic 

molecules, water oxidation and reduction, and molecular materials such as molecular wires. Interdisciplinary alliances in this 

department aim to create new basic concepts for the molecular and energy conversion through the fundamental science 

conducted at each division. During this year, professor Tetsuro Murahashi (Research Center of Integrative Molecular 

Systemes) was moved out from IMS.
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Bioinorganic Chemistry of Metalloproteins 
Responsible for the Homeostasis Control
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Transition metal ions and metalloproteins play crucial 
roles in meeting the energy demands of the cell by playing 
roles in intermediary metabolism and in signal transduction 
processes. Although they are essential for biological function, 
metal ion bioavailability must be maintained within a certain 
range in cells due to the inherent toxicity of all metals above a 
threshold. This threshold varies for individual metal ions. 
Homeostasis of metal ions requires a balance between the 
processes of uptake, utilization, storage, and efflux and is 
achieved by the coordinated activities of a variety of proteins 
including extracytoplasmic metal carriers, ion channels/pumps/
transporters, metal-regulated transcription and translation 
proteins, and enzymes involved in the biogenesis of metal-
containing cofactors/metalloproteins. In order to understand 
the processes underlying this complex metal homeostasis 
network, the study of the molecular processes that determine 
the protein–metal ion recognition, as well as how this event is 
transduced into a functional output, is required. My research 
interests are focused on the elucidation of the struc ture and 

function relationships of metalloproteins responsible for the 
regulation of biological homeostasis.

Figure 1.  Schematic view of heme uptake system in Corynebacterium 

glutamicum and the crystal structure of HmuT that transports heme to 

the heme transporter HmuUV.
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1.  Structure and Function of CgHmuT that 
is a Heme Binding Protein for the ABC-
Type Heme Transporter CgHmuUV

As iron is an essential trace element for most of organ-
isms, they develop sophisticated iron acquisition systems. 
Pathogenic bacteria can use heme as an iron source partly 
because heme is the most abundant iron species in their host. 
However, there is little free heme molecule as most of heme 
molecules are tightly bound to hemoproteins as a prosthetic 
group. Therefore, some heme acquisition system is required to 
use heme in hemoproteins as an iron source.

In Gram-negative bacteria, hemophores that are secreted 
to the extracellular medium acquire heme from hemoproteins 
and transport it to a specific outer membrane receptor. The 
outer membrane receptor transports heme across the outer 
membrane to the periplasmic space, where a periplasmic 
heme-binding protein binds heme to transport it to an ABC-
type heme transporter. On the other hand, in Gram-positive 
bacteria, heme uptake occurs by direct interaction between 
hemoproteins or heme and the membrane anchored proteins 
responsible for heme binding and transport. In a Gram-posi-
tive bacterium Corynebacterium glutamicum, heme is cap-
tured by the membrane anchored heme binding proteins, HtaA 
and HtaB proteins, and then heme is transferred to HmuT, 
which is a heme-binding protein for the ABC-type heme 
transporter HmuUV. Heme is transported into cytoplasm by 
this ABC transporter. While this heme uptake process is 
proposed based on the genetic and microbiological studies, the 
molecular mechanisms of heme uptake/transport are not obvi-
ous mainly due to a lack of structural information of these 
proteins. We have characterized HmuT from Corynebacterium 
glutamicum (CgHmuT) by X-ray crystallography to elucidate 
the molecular mechanism of heme transport by CgHmuT.

The structure of CgHmuT was determined at a resolution 
of 1.42 Å. CgHmuT showed a basket handle shape, where a 
long α helix is connected the N- and C-terminal domains 
(Figure 1). There was a cleft between the N- and C-terminal 
domains, in which one heme molecule was accommodated 
with His141 and Tyr240 as axial ligands that were located at 
the loop regions in the N- and C-terminal domains, respec-
tively. Intriguingly, it was shown that heme was accommo-
dated in the heme-binding site of CgHmuT with two different 
orientations. As protoheme bound to CgHmuT has an asym-
metric structure, there are two possible orientations of heme 
when it is accommodated in the heme-binding site of CgHmuT. 
When a single orientation of heme was assumed in the model 
refinement, the residual electron densities were observed in the 
FO-FC map. On the other hand, good fitting of the model into 
the electron densities was obtained without any residual 
electron densities when 1:1 mixture of two orientations of 
heme was assumed, indicating the existence of the two dif-
ferent orientation of heme in CgHmuT. 

2.  A Novel Photosensor Protein CarH 
Using Vitamin B12 as a Photosensing Unit

Vitamin B12 is well known as a cofactor for the B12-
dependent enzymes that catalyze carbon skeleton rearrange-
ment or elimination reactions, where Co–C bond hemolysis 
takes place to form the radical species as the reaction interme-
diate. Recently, a novel biological function of vitamin B12 has 
been reported: A photosensor protein CarH utilizes adenosyl-
cobalamin (vitamin B12) as its senor unit for light sensing. We 
are now working on CarH from Thermus thermophilus to 
elucidate the molecular mechanisms of photosensing and 
signal transduction of CarH.

* IMS International Internship Program
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Living systems are characterized as dynamic processes of 
assembly and disassembly of various biomolecules that are 
self-organized, interacting with the external environment. The 
omics-based approaches developed in recent decades have 
provided comprehensive information regarding biomolecules 
as parts of living organisms. However, fundamental questions 
still remain unsolved as to how these biomolecules are ordered 
autonomously to form flexible and robust systems (Figure 1). 
Biomolecules with complicated, flexible structures are self-
organized through weak interactions giving rise to supra-
molecular complexes that adopt their own dynamic, asym-
metric architectures. These processes are coupled with expres-
sion of integrated functions in the biomolecular systems.

Toward an integrative understanding of the principles 
behind the biomolecular ordering processes, we conduct 
multidisciplinary approaches based on detailed analyses of 

dynamic structures and interactions of biomolecules at atomic 
level, in conjunction with the methodologies of molecular and 
cellular biology along with synthetic and computational 
technique.

Figure 1.  Formation of supramolecular machinery through dynamic 

assembly and disassembly of biomolecules.
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1.  Exploration of Conformational Spaces 
of Flexible Oligosaccharides

Conformational dynamics are essential properties of bio-
macromolecules that are involved in molecular recognition 
events in living systems. The motional freedom of three-
dimensional structures can endow them with adaptability to 
various interaction partners, occasionally in promiscuous 
fashions. We employed stable isotope- and lanthanide-assisted 
NMR approaches in conjunction with replica-exchange molecu-
lar dynamics (REMD) simulations to obtain atomic descrip-
tions of the conformational dynamics of high-mannose-type 
oligosaccharides, which harbor intracellular glycoprotein-fate 
determinants in their triantennary structures.1) The experimen-
tally validated REMD simulation provided quantitative views 
of the dynamic conformational ensembles of the complicated, 
branched oligosaccharides, and indicated significant expansion 
of the conformational space upon removal of a terminal 
mannose residue during the functional glycan-processing 
pathway (Figure 2).

Figure 2.  Superimpositions of 240 conformers derived from NMR-

validated replica exchange MD simulations of the high-mannose-type 

M9 (left) and M8B (right) oligosaccharides.

2.  Structural Characterization of 
Biomolecular Interactions Involved in 
Protein Fate Determination

Using NMR spectroscopy and X-ray crystallography, we 
characterized structures and interactions of multidomain 
proteins involved in fate determination of other proteins in 
living systems. In the endoplasmic reticulum, folding of newly 
synthetized proteins is facilitated through interaction with 
various proteins including molecular chaperones. We deter-
mined three-dimensional structures of the putative substrate-
binding domains of UDP-glucose:glycoprotein glucosyltrans-
ferase (UGGT), a folding sensor enzyme, and protein disulfide 
isomerase (PDI), a folding catalyst, underscoring the importance 
of conformational changes in substrate recognition.2,3)

Many of proteins in cells are destroyed primarily by 
ubiquitin-/proteasome-mediated protein degradation system. 
We applied a paramagnetic NMR technique to determine the 
mode of substrate recognition by the Josephin domain of 
ataxin-3, which has an endo-type deubiquitinase activity.4) 
Moreover, our NMR study revealed that Ump1, a proteasome 
assembly chaperone, is an intrinsically unstructured protein 
and largely devoid of secondary structural elements.5)

Our NMR data also contributed to providing structural 
bases of interactions of amyloidogenic proteins with self- 
assembled spherical complex displaying a gangliosidic glycan 
cluster (collaboration with Dr. Sota Sato, Tohoku University 
and Dr. Makoto Fujita, the University of Tokyo) and with 
SorLA, a neuronal sorting receptor considered to be a major 
risk factor for Alzheimer’s disease (in collaboration with Dr. 
Junichi Takagi, Osaka University).6,7)

Figure 3.  3D Structures of (A) the Trx3 domain of UGGT, (B) PDI 

b’-a’ domains, and (C) the Josephin domain of ataxin-3 complexed 

with di-ubiquitin.
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Activity of life is supported by various molecular machines 
made of proteins and nucleic acids. These biological molecu-
lar machines show high performance such as reaction speci-
ficity and energy conversion efficiency, and are superior to 
man-made machines in some aspects.

One of the representatives of the molecular machines is 
linear and rotary molecular motors (Figure 1). Molecular 
motors generate mechanical forces and torques that drive their 
unidirectional motions from the energy of chemical reaction or 
the electrochemical potential.

We will unveil operation principles of biological molecular 
motors and machines with single-molecule techniques based 
on optical microscopy. We will also try to create new bio-
logical molecular motors and machines to understand their 
design principles. Our ultimate goal is controlling living 

organisms with created molecular machines.

Figure 1.  A linear molecular motor chitinase. Chitinase moves on the 

substrate crystalline chitin unidirectionally and processively, driven by 

the energy of hydrolysis of the chain end of the chitin.
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1.  Key Chemical Factors of Arginine 
Finger Catalysis of F1-ATPase Clarified by 
an Unnatural Amino Acid Mutation1)

A catalytically important arginine, called Arg finger, is 
employed in many enzymes to regulate their functions through 
enzymatic hydrolysis of nucleotide triphosphates. F1-ATPase, 
a rotary molecular motor, possesses Arg fingers which cata-
lyze hydrolysis of adenosine triphosphate (ATP) for efficient 
chemo-mechanical energy conversion. In this study, we exam-
ined the Arg finger catalysis by single-molecule measurements 
for a mutant of F1-ATPase in which the Arg finger is sub-
stituted with an unnatural amino acid of a lysine analogue, 
2,7-diaminoheptanoic acid (Lyk). The use of Lyk, of which 
the side chain is elongated by one CH2 unit so that its chain 
length to the terminal nitrogen of amine is set to be equal to 
that of arginine, allowed us to resolve key chemical factors in 
the Arg finger catalysis, i.e., chain length matching and 
chemical properties of the terminal groups. Rate measure-
ments by single-molecule observations showed that the chain 
length matching of the side-chain length is not a sole require-
ment for the Arg finger to catalyze the ATP hydrolysis reac-
tion step, indicating the crucial importance of chemical prop-
erties of the terminal guanidinium group in the Arg finger 
catalysis. On the other hand, the Lyk mutation prevented 
severe formation of an ADP inhibited state observed for a 
lysine mutant and even improved the avoidance of inhibition 
compared with the wild-type F1-ATPase. The present study 
demonstrated that incorporation of unnatural amino acids can 
widely extend with its high “chemical” resolution biochemical 
approaches for elucidation of the molecular mechanism of 
protein functions and furnishing novel characteristics.

Figure 2.  (A) Crystal structure of mitochondrial F1–ATPase viewed 

from the side, βDP/αDP catalytic interface. The α, β, and γ subunits are 

shown in pearl pink, pearl blue, and pearl yellow, respectively. The 

“arginine finger” in the α subunit is shown by pink space-filling 

model. AMP-PNP bound to the catalytic site are shown by blue space-

filling model. (B) Chemical structures and side-chain length of 

arginine (Arg, top), lysine (Lys, middle), and 2,7-diaminoheptanoic 

acid (Lyk, bottom).

2.  High-Speed Angle-Resolved Imaging of 
Single Gold Nanorod with Microsecond 
Temporal Resolution and One-Degree 
Angle Precision2)

We developed two types of high-speed angle-resolved 
imaging methods for single gold nanorods (SAuNRs) using 
objective-type vertical illumination dark-field microscopy and 
a high-speed CMOS camera to achieve microsecond temporal 
and one-degree angle resolution. These methods are based on: 
(i) an intensity analysis of focused images of SAuNR split into 
two orthogonally polarized components and (ii) the analysis of 
defocused SAuNR images. We determined the angle precision 
(statistical error) and accuracy (systematic error) of the result-
ant SAuNR (80 nm × 40 nm) images projected onto a sub-
strate surface (azimuthal angle) in both methods. Although 
both methods showed a similar precision of ~1° for the azi-
muthal angle at a 10 µs temporal resolution, the defocused 
image analysis showed a superior angle accuracy of ~5°. In 
addition, the polar angle was also determined from the de-
focused SAuNR images with a precision of ~1°, by fitting with 
simulated images. By taking advantage of the defocused 
image method’s full revolution measurement range in the 
azimuthal angle, the rotation of the rotary molecular motor, 
F1-ATPase, was measured with 3.3 µs time resolution. The 
time constants of the pauses waiting for the elementary steps 
of the ATP hydrolysis reaction and the torque generated in the 
mechanical steps have been successfully estimated. The high-
speed angle-resolved SAuNR imaging methods will be appli-
cable to the monitoring of the fast conformational changes of 
many biological molecular machines.

Figure 3.  (Left) Schematic image of experimental system of rotation 

assay of F1-ATPase using single gold nanorod (SAuNR) as a probe. 

(Right) Example of rotation of F1-ATPase probed at 3.3 µs time 

resolution.
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Exploring the boundary between a living and non-living 
matter is one of the most challenging problems for contem-
porary scientists. In order to understand a cell, which is a 
minimum unit of life, synthesis of an artificial cell from 
supramolecular chemical approach is a plausible strategy, 
because simple molecular assemblies evolved to a simple cell 
on prebiotic earth. As shown in Figure 1, the key elements of a 
cell are compartment, information and catalyst, i.e. metabo-
lism. We have tackled the construction of a chemical arti ficial 
cell endowed with these three elements.

In our laboratory, we aim to construct the two arti ficial 
cells using giant vesicles (GV) as compartment. One is an 
artificial cell which can proliferate from generation to gen-
eration. This work is a collaboration with Sugawara group 
(Kanagawa Univ.). The other research is an artificial cell 
incorporating catalyst producing system. The GV system can 
generate catalyst and membrane molecule by transforming 
each precursors, which makes it possible for GVs to pro-
liferate with producing catalyst.

Figure 1.  Artificial cell model

The replicating systems of compartment and the replicating system of 

information materials are combined. The reactions in the two repli-

cating systems are accelerated by each proper catalysts.
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1.  An Artificial Cell with a Primitive Cell 
Cycle

One of the approaches for exploring the origin of life or 
elucidating of the functions of life is construction of an 
artificial cell from supramolecular chemical approach.1,2) In 
collaboration with Sugawara’s group, artificial cells which 
have three basic elements of a cell; information (DNA), 
compartment (giant vesicle (GV): A supramolecular assembly 
of amphiphiles) and metabolism (synthetic catalyst) have been 
constructed.3) The artificial cellular system consisted of ampli-
fication of DNA by polymerase chain reaction and self-
reproduction of GV by addition of membrane lipid precursor. 
Although this GV proliferated with distribution of internal 
amplified DNA, it ceased at the 2nd generation because of 
depletion of internal information substances. 

Now, we construct a recursive vesicular artificial cell 
system with proliferation cycles, collaborating with Sugawara 
group. By using the vesicular transport system,4) the 2nd 
generation of GVs which have no PCR reagents after self-
reproduction was replenished by fusing with the conveyer 
GVs encapsulating the PCR reagents (Figure 2). The replen-
ished GV can amplify the internal DNA and yield 3rd genera-
tion of the GV after addition of membrane lipid precursor. The 
GV system with replenishing system was constructed.5) This 
system would lead to an evolvable artificial cellular system.

Figure 2.  An artificial cell system with premitive cell cycle. After 

growth and division of GV, the substance-depleted GV was replen-

ished by the vesicular fusion. 

2.  An Artificial Cell Containing a Catalyst-
Producing System

A cell is a self-organized system which is able to maintain 

its state due to metabolism. The previous artificial cellular 
system have been so robust that it can self-reproduce only 
specific state in the any environments.

Here, we aim to realize a new artificial cellular system in 
which the GV self-organize its own composition sponta-
neously according to the environment. In order for GV to self-
reproduce and self-maintain, it is necessary to combine metabo-
lism and compartment. By introducing the cross-catalysis 
system (Figure 3), we construct an artificial cell in which 
catalysts are produced. After addition of membrane precursor 
aldehyde, the production of catalyst and membrane molecule 
was confirmed by NMR, microscopy observation. In this 
system, the GV was reproduced by the catalyst which catalyze 
the production of the GV membrane lipid molecule. The GV 
membrane provides the field where the catalyst is synthesized.

In addition, by changing the composition of the vesicular 
membrane, the production of catalyst and membrane molecule 
was oscillated by interacting each other. This means that the 
artificial cell incorporating the negative feedback is realized.

Figure 3.  Scheme of new artificial cellular system. The membrane 

molecules of the GV was synthesized by the catalyst produced in the 

GV. 
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Membrane proteins are important for homeostasis and 
signaling of living cells, which work as ion channel, ion pump, 
various types of chemical and biophysical sensors, and so on. 
These proteins are considered as one of important targets for 
biophysical studies. Our main goal is to clarify molecular 
mechanisms underlying functions of the channels, transporters 
and receptors mainly by using stimulus-induced difference 
infrared spectroscopy, which is sensitive to the structural and 
environmental changes of bio-molecules.

We applied attenuated total reflection Fourier-transform 
infrared (ATR-FTIR) spectroscopy to extract ion-binding-
induced signals of various kinds of membrane proteins. For 
example, KcsA is a potassium channel, which is highly selec-
tive for K+ over Na+, and the selectivity filter binds multiple 
dehydrated K+ ions upon permeation. Shifts in the peak of the 
amide-I signals towards lower vibrational frequencies were 
observed as K+ was replaced with Na+ (Figure 1). These 
vibrational modes give us precise structural information of the 
selectivity filter. Moreover, by changing concentrations of K+ 
in buffer solutions, we can estimate affinity of the selectivity 
filter for K+ ions.

Recently, we have developed a rapid-buffer exchange 
apparatus for time-resolved ATR-FTIR spectroscopy, which 
can be utilized for studying dynamics of structural transition in 
membrane proteins.

Figure 1.  (top) X-ray crystal structure of a potassium ion channel, 

KcsA. (bottom) The ion-exchange induced difference infrared spectra 

of KcsA with different potassium ion concentration. The amide I 

bands are mainly originated from the carbonyl groups of the selec-

tivity filter of KcsA.
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1.  Light-Induced Structural Changes of 
Chimeras of Channelrhodopsin-1 and -2 
from Chlamydomonas reinhardtii1)

Optogenetics is a powerful technique for manipulating 
specific neural activities by light stimulation, which has been 
rapidly growing up since discovery of light-gated cation 
channel, channelrhodopsin. There are two kinds of channel-
rhodopsin called channelrhodopsin-1 and -2 (ChR1 and ChR2) 
which are expressed in the eyespot of Chlamydomonas 
reinhardtii. Among them, ChR2 and its derivatives have been 
extensively utilized in optogenetics application. Alteration of 
channelrhodopsins to achieve a favorable electrophysiological 
response could be rationally applied when the molecular 
mechanisms of channelrhodopsin are understood well.

The basic architecture of channelrhodopsin is similar to 
other microbial rhodopsins which are composed of seven 
transmembrane helices with an all-trans retinal as the chromo-
phore. Photoisomerization of the retinal chromophore upon 
light absorption causes conformational changes of the protein 
that result in opening of the channel gate and the influx of 
cations. The time course of the photocurrent upon continuous 
illumination of ChR2 shows a peak-and-plateau, while that of 
ChR1 shows a rectangular shape. The suppression just after 
the transient maximum photocurrent seen in ChR2 is denoted 
the “desensitization.”

In 2009, several types of ChR1/ChR2 chimeras were 
characterized using electrophysiological techniques. One of 
these chimeras consists of the first five transmembrane helices 
(TM1 to TM5) from ChR1 and the last two transmembrane 
helices (TM6 and TM7) from ChR2. This chimera is referred 
to as ChR5/2. Another chimera consists of TM1 and TM2 from 
ChR1 and TM3 to TM7 from ChR2. This chimera is referred 

to as ChR2/5 (for details, see Figure 2). These ChR1/ChR2 
chimeras show larger photocurrents than the wild types, and 
their desensitization is significantly reduced upon continuous 
illumination. However, the molecular mechanism of sup-
pression of desensitization has remained unknown.

Fourier-transform infrared (FTIR) spectroscopy has revealed 
the molecular mechanisms underlying the photo-induced 
structural dynamics of various microbial rhodopsins, such as 
bacteriorhodopsin and halorhodopsin.2) We applied light-
induced difference FTIR spectroscopy on ChR1/ChR2 chi-
meras and ChR2 with an aim to reveal the molecular basis 
underlying the differences in electrophysiological properties 
between them.

As a consequence, we found that ChR1/ChR2 chimeras 
exhibited structural changes distinct from those in ChR2 upon 
continuous illumination. In particular, the protonation state of 
a glutamate residue, Glu129, (Glu90 in ChR2 numbering) in 

the ChR chimeras is not changed as dramatically as seen in 
ChR2 as a negative band at 1718 cm–1 (Figure 3). Moreover, 
using mutants stabilizing particular photointermediates as well 
as time-resolved measurements, we identified some differ-
ences between the major photointermediates of ChR2 and 
ChR1/ChR2 chimeras. We couldn’t see any substantial change 
in the protonation state of Glu129 in ChR5/2 during the photo-
cycle. Taken together, our data indicate that the gating and 
desensitizing processes in ChR1/ChR2 chimeras are different 
from those in ChR2 and that these differences should be 
considered in the rational design of new optogenetic tools 
based on channelrhodopsins.
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Figure 2.  (a) Schematic representation of the chimeric channel 

rhodopsins. (b) The X-ray crystal structure of a chimeric channel-

rhodopsin called C1C2, which is nearly identical to ChR5/2. (c) The 

photocurrent profiles of ChR1, ChR2and the chimeras. This figure is 

adapted from ref. 1.

Figure 3.  (a) Light-induced difference spectra in the C=O stretching 

region of carboxylic acid side chains. (c) The X-ray crystal structure 

of C1C2 shown along TM2 and TM7 helices. This figure is adapted 

from ref. 1.



66

RESEARCH ACTIVITIES

Keywords Transition Metal Catalysis, Green Chemistry, Organic Synthesis

• Y. M. A. Yamada, S. M. Sarkar and Y. Uozumi, “Amphiphilic Self-

Assembled Polymeric Copper Catalyst to Parts per Million Levels: 

Click Chemistry,” J. Am. Chem. Soc. 134, 9285–9290 (2012).

• Y. M. A. Yamada, S. M. Sarkar and Y. Uozumi, “Self-Assembled 

Poly(imidazole-palladium): Highly Active, Reusable Catalyst at 

Parts per Million to Parts per Billion Levels,” J. Am. Chem. Soc. 

134, 3190–3198 (2012).

• G. Hamasaka, T. Muto and Y. Uozumi, “Molecular-Architecture-

Based Administration of Catalysis in Water: Self-Assembly of an 

Amphiphilic Palladium Pincer Complex,” Angew. Chem., Int. Ed. 

50, 4876–4878 (2011).

• Y. Uozumi, Y. Matsuura, T. Arakawa and Y. M. A. Yamada, 

“Asymmetric Suzuki-Miyaura Coupling in Water with a Chiral 

Pallasium Catalyst Supported on Amphiphilic Resin,” Angew. 

Chem., Int. Ed. 48, 2708–2710 (2009).

• Y. M. A. Yamada, T. Arakawa, H. Hocke and Y. Uozumi, “A 

Nanoplatinum Catalyst for Aerobic Oxidation of Alcohols in 

Water,” Angew. Chem., Int. Ed. 46, 704–706 (2007).

• Y. Uozumi, Y. M. A. Yamada, T. Beppu, N. Fukuyama, M. Ueno 

and T. Kitamori, “Instantaneous Carbon–Carbon Bond Formation 

Using a Microchannel Reactor with a Catalytic Membrane,” J. Am. 

Chem. Soc. 128, 15994–15995 (2006).

Selected Publications

Member
Assistant Professor

OSAKO, Takao
HAMASAKA, Go

Visiting Scientist; 
JSPS Post-Doctoral Fellow

PAN, Shiguang

Post-Doctoral Fellow
NAGAOSA, Makoto
ROY, David
HIRATA, Shuichi

Graduate Student
KOBAYASHI, Noboru
SAKURAI, Fumie
TSUJI, Hiroaki
YAN, Shuo
ICHII, Shun

Technical Fellow
TORII, Kaoru
TAZAWA, Aya
YAMAMURA, Kotaro
TSUCHIMOTO, Tatsushi

Secretary
SASAKI, Tokiyo
FUKUSHIMA, Tomoko
HAZAMA, Kozue
TANIWAKE, Mayuko

Education
1984 B.S. Hokkaido University
1990 Ph.D. Hokkaido University
Professional Employment
1988 JSPS Research Fellow
1988 Research Associate, Hokkaido University
1990 Assistant Professor, Hokkaido University
1994 Research Associate, Columbia University
1995 Lecturer, Kyoto University
1997 Professor, Nagoya City University
2000 Professor, Institute for Molecular Science
 Professor, The Graduate University for Advanced Studies
2007 Research team leader, RIKEN
2014 Distinguished Professor, Three George University
2003 Research Project Leader, JST CREST Project ( –2008)
2008 Research Project Leader, NEDO Project ( –2012)
2011 Deputy Research Project Leader, JST CREST ( –2016)
Awards
1991 Eisai Award, Synthetic Organic Chemistry
1998 The Pharmaceutical Society of Japan Award for Young 

Scientist
2007 The Chemical Society of Japan (CSJ) Award for Creative 

Work
2007 MEXT Ministerial Award for Green Sustainable Chemistry
2010 Inoue Prize for Science
2014 The Commendation for Science and Technology by the 

Minister of MEXT, Prize for Science and Technology

UOZUMI, Yasuhiro
Professor
[uo@ims.ac.jp]

Development of Heterogeneous Catalysis 
toward Ideal Chemical Processes

Department of Life and Coordination-Complex Molecular Science
Division of Complex Catalysis

Our research interests lie in the development of transition 
metal-catalyzed reaction systems toward ideal (highly effi-
cient, selective, green, safe, simple, etc.) organic transforma-
tion processes. In one active area of investigation, we are 
developing the heterogeneous aquacatalytic systems. Various 
types of catalytic organic molecular transformations, e.g. 
carbon–carbon bond forming cross-coupling, carbon–hetero-
atom bond forming reaction, aerobic alcohol oxidation, etc., 
were achieved in water under heterogeneous conditions by 
using amphiphilic polymer-supported transition metal com-
plexes and nanoparticles (Figure 1), where self-concentrating 
behavior of hydrophobic organic substrates inside the amphi-
philic polymer matrix played a key role to realize high reac-
tion performance in water.

Figure 1.  Typical Examples of Heterogeneous Aquacatalyses using 

Amphiphilic Polymer-Supported Metal Complexes and Metal 

Nanoparticles.
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1.  Enantioposition-Selective Copper-
Catalyzed Azide–Alkyne Cycloaddition for 
Construction of Chiral Biaryl Derivatives1,2)

A highly enantioposition-selective copper-catalyzed azide– 
alkyne cycloaddition (CuAAC) of dialkynes bearing prochiral 
biaryls has been developed for the construction of 1,2,3- 
triazoles bearing axially chiral biaryl groups in up to 76% 
yield and up to 99% ee.

Figure 2.  Enatioposition-selective copper-catalyzed azide–alkyne 

cycloaddition.

2.  Continuous-Flow Oxidation of Alcohols 
and Hydrogenation of Olefines and 
Nitrobenzenes Catalyzed by Platinum 
Nanoparticles Dispersed in an Amphiphilic 
Polymer3,4)

We have developed a continuous-flow reaction system 
containing amphiphilic polymer-dispersion of platinum nano-
particles (ARP-Pt) packed in a catalyst cartridge to catalyze 
the aerobic oxidation of alcohols and the hydrogenation of 
olefins and nitrobenzenes. In the flow system using O2, vari-
ous alcohols were fully oxidized within 73 seconds (100–120 
°C, 40–70 bar of the system pressure, 5 vol% of O2) in water 
to give the corresponding carbonyl products in up to 99% 
yield. Olefins and nitrobenzenes underwent hydrogenation 
with the same flow system under H2 (25 °C, 5–15 bar of the 
system pressure, 5 vol% of H2) within 31 seconds to afford the 
corresponding hydrogenated products in up to 99% yield.

Figure 3.  Continuous-flow oxidation of alcohols and hydrogenation 

of olefins and nitorobenzenes.

3.  Palladium NNC-Pincer Complex: An 
Efficient Catalyst for Allylic Arylation at 
Perts Per Billion Levels5)

Allylic arylation of allylic acetates by sodium tetraaryl-

borates in the presence of ppb to ppm (molar) loadings of a 
palladium NNC-pincer complex catalyst in methanol at 50 °C 
gave the corresponding arylated products in excellent yields. 
Total turnover numbers of up to 500,000,000 and turnover 
frequencies of up to 11,250,000 h–1 were achieved.

Figure 4.  Allylic arylation of allylic acetates with sodium tetraaryl-

borates in the presence of a palladium NNC-pincer complex.

4.  Development of an Aquacatalytic 
System Based on the Formation of 
Vesicles of an Amphiphilic Palladium NNC-
Pincer Complex6)

Two amphiphilic palladium NNC-pincer complexes bear-
ing hydrophilic tri(ethylene glycol) chains and hydrophobic 
dodecyl chains were designed and prepared for the develop-
ment of a new aquacatalytic system. In water, these amphiphilic 
complexes self-assembled to form vesicles, the structures 
which were established by means of a range of physical 
techniques. When the catalytic activities of the vesicles were 
investigated in the arylation of terminal alkynes in water, they 
were found to catalyze the reaction of aryl iodides with 
terminal alkynes to give good yields of the corresponding 
internal alkynes. The formation of a vesicular structure was 
shown to be essential for efficient promotion of this reaction in 
water.

Figure 5.  Cu-free Sonogashira reaction in water in the presence of a 

self-assembled vesicular amphiphilic palladium NNC-pincer complex.
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The field of molecular catalysis has been an attractive area 
of research to realize efficient and new transformations in the 
synthesis of functional molecules. The design of ligands and 
chiral molecular catalysts has been recognized as one of the 
most valuable strategies; therefore, a great deal of effort has 
been dedicated to the developments. In general, “metal” has 
been frequently used as the activation center, and confor-
mationally rigid, and C2- or pseudo C2 symmetry has been 
preferably components for the catalyst design. To develop new 
type of molecular catalysis, we have focused on the use of 
hydrogen and halogen atom as activation unit, and have 
utilized conformationally flexible components in the molecu-
lar design of catalyst, which had not received much attention 
until recently. We hope that our approach will open the new 
frontier in chiral organic molecules from chiral molecular 
chemistry to chiral molecular science.

Figure 1.  Hydrogen bonding network in chiral bis-phosphoric acid 

catalyst derived from (R)-3,3’-di(2-hydroxy-3 -arylphenyl)binaphthol. 

Hydrogen bond acts as activation unit for the substrate in asymmetric 

reaction space and controls atropisomeric behavior in naphthyl–phenyl 

axis.
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1.  Brønsted Acid Catalyzed Asymmetric 
1,3-Alkyl Migration of 1,2,2-Substituted 
Butenyl Amines: Asymmetric Synthesis of 
Linear Homoprenylamines

Allylation of imines with allylic metal reagents has been 
one of the most valuable tools to synthesize enantioenriched 
homoallylic amines. Due to the inherent nature of allylic metal 
reagent, however, regioselectivity has been a long-standing 
subject in this area. To develop the synthetic reaction for 
enantioenriched linear homoprenylic amines, we discovered 
chirality transferred 1,3-alkyl migration of 1,2,2-substituted 
butenyl amines in the presence of trifluoromethyl acetic acid, 
and developed it as synthetic method for variety of enantio-
enriched linear homoprenylic amines.1) In sharp contrast, Ollis 
et al. previously reported that chirality was significantly 
dropped in 1,3-alkyl migration of N,N-dimethyl-1-substituted-
3-buten-1-amine.2) To the best our knowledge, our discovery is 
the first example of chirality transferred 1,3-alkyl migration 
and the new entry of the synthetic methodology for the linear 
enantioenriched homoallylic amines.

2.  Design of Chiral Brønsted Acid Catalyst

Chiral Brønsted acid catalysis has been recognized as one 
of the useful tools in asymmetric synthesis. We have contrib-
uted to this area by focusing on the use of perfluoroaryls and 
C1-symmetric design.

Perfluorinated aryls have emerged as an exquisite class of 
motifs in the design of molecular catalysts, and their electronic 
and steric alterations lead to notable changes in the chemical 
yields and the stereoselectivities. However, unfortunately, the 
distinctive potential of perfluorinated aryls has not been fully 
exploited as design tools in the development of chiral Brønsted 
acid catalysts. We developed the perfluoaryls-incorporated 
chiral mono-phosphoric acids as chiral Brønsted acid catalysts 
that can deriver high yields and stereoselectivities in the 
reactions of imines with unactivated alkenes. We have described 
the first example of a diastereo- and enantioselective [4+2] 
cycloaddition reaction of N-benzoyl imines, as well as the 
enantioselective three-component imino–ene reaction using 
aldehydes and FmocNH2.3,4)

We have developed (R)-3,3’-di(2-hydroxy- 3-arylphenyl)
binaphthol derived chiral bis-phosphoric acid which efficiently 
catalyzed enantioselective Diels–Alder reaction of acroleins 
with amidodienes.5,6) We demonstrated that two phosphoric 
acid groups with individually different acidities can play 
distinct roles in catalyst behavior through hydrogen bonding 
interactions. Hence, we were interested to explore whether a 
combination of different acidic functional groups, in particular 
an aryl phosphinic acid-phosphoric acid, would function as an 
efficient Brønsted acid catalyst. We developed a Brønsted acid 
with two different acidic sites, aryl phosphinic acid-phosphoric 

acid, and its catalytic performance was assessed in the hetero-
Diels–Alder reaction of aldehyde hydrates with Danishefsky’s 
diene, achieving high reaction efficiency.7) Furthermore, 
molecular design of a chiral Brønsted acid with two different 
acidic sites, chiral carboxylic acid–cyclic mono-phosphoric 
acid, was identified as a new and effective concept in asym-
metric hetero-Diels–Alder reaction of 2-azopyridinoester with 
amidodienes.8)

3.  Halogen Bond Donor Catalyzed Allylation 
Reaction of Isoquinoline with Allylsilatrane

Halogen bonds are attractive non-covalent interactions 
between terminal halogen atoms in compounds of the type 
R–X (X = Cl, Br, I) and Lewis bases LB. It has been known 
that strong halogen bonds are realized when “R” is highly 
electronegative substituents such as perfluorinated alkyl or aryl 
substituents. We recently developed synthetic methodology for 
perfluorinated aryl compounds, and applied it for the develop-
ment of chiral Brønsted acid catalysts. On the basis of our 
achievements, we have examined it to develop halogen bond 
donor catalyzed allylation reaction.

We found that pentafluoroiodebenzene was able to cata-
lyze the allylation reaction of isoquinoline with allylsilatrane 
to give the corresponding product in good yield.9)

Figure 2.  Halogen bond donor catalyzed allylation reaction. Com-

parison with Brønsted acid/hydrogen bond donor catalyst.
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Artificial photosynthesis is a solar energy conversion 
technology that mimics natural photosynthesis, and considered 
to be one of the next big breakthroughs in energy. Our group 
studies the development of functional metal complexes toward 
the realization of artificial photosynthesis. Specific areas of 
research include (i) synthesis of ruthenium-based molecular 
catalysts for water oxidation and carbon dioxide reduction, (ii) 
creation of cluster catalysts for multi-electron transfer reac-
tions, (iii) mechanistic investigation into water oxidation 
catalyzed by metal complexes, (iv) application of proton-
coupled electron transfer toward multi-electron transfer reac-
tions, (v) electrochemical evaluation of the activity of molecu-
lar catalysts for water oxidation and carbon dioxide reduction, 
(vi) electrochemical measurement of metal complexes in 
homogeneous solutions under photoirradiation, and (vii) 
development of reaction fields via self-assembly of molecular 
catalysts. Figure 1.  An overview of our work.

Development of Functional Metal Complexes 
for Artificial Photosynthesis

Department of Life and Coordination-Complex Molecular Science
Division of Functional Coordination Chemistry
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1.  Oxygen Evolution Catalysed by a 
Mononuclear Ruthenium Complex bearing 
Pendant -SO3

– Groups1)

Rational molecular design of catalytic systems capable of 
smooth O–O bond formation is critical to the development of 
efficient catalysts for water oxidation. In this work, we developed 
a new ruthenium complex which bears pendant SO3

– groups in 
the secondary coordination sphere: [Ru(terpy)(bpyms)(OH2)] 
(terpy = 2,2’:6’,2’’-terpyridine, bpyms = 2,2’-bipyridine-5,5’-
bis(methanesulfonate)). Water oxidation driven by a Ce4+ 
oxidant is distinctly accelerated upon introduction of the 
pendant SO3

– groups in comparisons to the parent catalyst, 
[Ru(terpy)(bpy)(OH2)]2+ (bpy = 2,2’-bipyridine). Spectro-
scopic, electrochemical, and crystallographic investigations 
concluded that the pendant SO3

– groups promote the for-
mation of an O–O bond via the secondary coordination sphere 
on the catalyst, whereas the influence of the pendant SO3

– 
groups on the electronic structure of the [Ru(terpy)(bpy)
(OH2)]2+ core is negligible. The results of this work indicate 
that modification of the secondary coordination sphere is a 
valuable strategy for the design of water oxidation catalysts.

Figure 2.  Schematic illustration of efficient O–O bond formation 

through modification of the secondary coordination sphere.

2.  Three Distinct Redox States of an Oxo-
Bridged Dinuclear Ruthenium Complex2)

Mixed-valence (MV) complexes are excellent model sys-
tems for the investigation of electron-transfer phenomena in 
biophysical processes such as photosynthesis and in artificial 
electronic devices based on conjugated materials. Given that 

the electronic properties of MV states could be strictly con-
trolled by the oxidation state of the dinuclear core, systematic 
investigations on the several oxidation states of dinuclear 
metal complexes are an interesting and important research 
topic. In this work, a series of [{(terpy)(bpy)Ru}(µ-O){Ru(bpy)
(terpy)}]n+ ([RuORu]n+, terpy = 2,2’;6’,2’’-terpyridine, bpy = 
2,2’-bipyridine) was systematically synthesized and charac-
terized in three distinct redox states (n = 3, 4, and 5 for 
RuII,III

2, RuIII,III
2, and RuIII,IV

2, respectively). The crystal 
structures of [RuORu]n+ (n = 3, 4, 5) in all three redox states 
were successfully determined. X-ray crystallography showed 
that the Ru–O distances and the Ru–O–Ru angles are mainly 
regulated by the oxidation states of the ruthenium centers. 
X-ray crystallography and ESR spectra clearly revealed the 
detailed electronic structures of two mixed-valence com-
plexes, [RuIIIORuIV]5+ and [RuIIORuIII]3+, in which each 
unpaired electron is completely delocalized across the oxo-
bridged dinuclear core. These findings allow us to understand 
the systematic changes in structure and electronic state that 
accompany the changes in the redox state.

Figure 3.  Two distinct MV states derived from a homovalent dimer.

References
1) M. Yoshida, M. Kondo, S. Torii, K. Sakai and S. Masaoka, “Oxy-

gen Evolution Catalysed by a Mononuclear Ruthenium Complex 

bearing Pendant -SO3
– Groups,” Angew. Chem., Int. Ed. 54, 7981–

7984 (2015).

2) M. Yoshida, M. Kondo, T. Nakamura, K. Sakai and S. Masaoka, 

“Three Distinct Redox States of an Oxo-Bridged Dinuclear Ruthe-

nium Complex,” Angew. Chem., Int. Ed. 53, 11519–11523 (2014).

Awards
FUKATSU, Arisa; Excellent Poster Award, International Conference on Artificial Photosynthesis (2014). 
IZU, Hitoshi; Excellent Poster Award, The 4th CSJ Chemistry Festa (2014).
ITOH, Takahiro; CrystEngComm Poster Prize (2014).
ITOH, Takahiro; Poster Award, The 64th Conference of Japan Society of Coordination Chemistry (2014).



72

RESEARCH ACTIVITIES

72

RESEARCH ACTIVITIES

Electron transfer is the most funda-
mental reaction to govern chemical 
reactions. To find an effective way to 
control electron transfer, transient active 
species were prepared at low tempera-
ture under inert atmosphere. Electronic 
structures of these active species were 
investigated with various techniques 
including absorption, 1H and 2H NMR, 
EPR, IR resonance Raman spectros-

copy and magnetic susceptibility measurement. Correlations 
between electronic structures and electron transfer ability are 
investigated in detail.

1.  Dioxygen Activation via Two-Electron 
Transfer from Hydroxide to Dioxygen 
Mediated By a Manganese(III) Complex

Although atmospheric dioxygen is regarded as the most 

ideal oxidant, O2 activation for use in oxygenation reactions 
intrinsically requires a costly sacrificial reductant. This study 
investigated the use of inexpensive aqueous alkaline solution 
for O2 activation. This study has clarified that a manganese 
(III) salen complex mediates O2 activation in the presence of 
OH– from 2 M KOH aqueous solution (Figure 1). Mechanistic 
investigation have shown that the reaction of MnIII(salen)(Cl) 
with OH– generates a transient species with strong reducing 
ability, which effects the reduction of O2 by means of a 
manganese(II) intermediate.

Figure 1.  Isotope experiments to verify two-electron transfer from 

OH– to O2.

Control of Electron Transfer for Efficient 
Oxygenation Reactions

Department of Life and Coordination-Complex Molecular Science
Division of Biomolecular Functions

KURAHASHI, Takuya
Assistant Professor



73

Annual Review 2015

73

Annual Review 2015

Visiting Professors

Visiting Professor
KATO, Masako (from Hokkaido University)

Construction of Photofunctional Metal Complexes and the Elucidation of Their Properties
In our research group, we focus on the creation of photofunctional metal complexes.

Fabrication of new multichromic materials: Platinum(II) complexes exhibit characteristic lumines cence 
by assembling. Taking advantage of the characteristic metallophilic interactions between Pt ions, our 
laboratory have developed new Pt(II) complexes with diimine or cyclometalating ligands exhibiting unique 

multichromic behaviors. Fabrication of novel 3d-metal complexes with intense luminescence: In order to effectively utilize 
elements, it is important that common metals should be used to fabricate materials with strong emissivity. We have developed 
various Cu(I) complexes exhibiting intense luminescence. Fabrication of new photocatalysts based on redox-active organic 
ligands: The strategy of our group to contribute to the energy issues is to construct novel photocatalytic systems using common 
metals instead of precious metals. By using a redox-active ligand, o-phenylenediamine, we found a simple metal-complex system 
for photochemical hydrogen evolution without extra photosensitizers.

Visiting Professor
YORIMITSU, Hideki (from Kyoto University)

Synthesis of π-Conjugated Molecules by Means of Organometallics
Porphyrins are an important class of compounds that occur in nature, playing the vital roles in 

biologically important phenomena such as oxygen transport, oxygen storage, and photosynthesis. 
Additionally, they constitute useful functional molecules in the field of advanced organic material sciences 
including organic photovoltaics. These important functions largely rely on their highly conjugated, 18π 

electronic, aromatic core. Peripheral functionalizations of the core have hence been attracting considerable attentions since they 
effectively alter the electronic and steric natures of the parent porphyrins to create new π-rich molecules and properties. Along 
this line, we have been interested in the following topics. 1) Catalytic selective direct arylation of porphyrin periphery, 2) 
Oxidative fusions of meso-(diarylamino)porphyrins and the properties of nanoazagraphene products, 3) Generation and reactions 
of porphyrinyl Grignard reagents, 4) Synthesis and properties of porphyrin oligomers.

Visiting Associate Professor
KAMIKUBO, Hironari (from Nara Institute of Science and Technology)

Development of an Auto-Sampling System Designed for Titration-SAXS Measurements
Various protein molecules concert with each other to express various biological functions. Because 

these multicomponent biological molecules weakly interact with each other, they can undergo regulatory 
dissociation and association upon inducing biological stimuli. In order to understand biological systems, we 
must, at first, aim to identify every possible unstable complex involved in the given multicomponent 

system, and then quantitatively analyze the interactions of these complex molecules. However, because of the complexity, it is 
generally difficult to apply conventional analytical methods to analyze such multi-component equilibrium systems. We have 
realized a new analytical method that would enable us to perform structure and interaction analyses on multi-component 
equilibrium systems. This was achieved by developing an auto-sampling system equipped with micro-fluidics technology. 
Applying this newly designed equipment to SAXS measurements, we can automatically collect numerous scattering profiles 
while altering the molar ratios of each component involved in the multi-component equilibrium; thus, enabling us to determine 
the system’s free energy landscape of the multi-component equilibrium.
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