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Functional dynamics plays an important role when bio
molecular machines fulfill their functions. For example, motor 
proteins walk on the rail or rotate relative to the stator by 
using ATP hydrolysis energy. Transporter proteins transport 
their substrates across the membrane by changing their confor
mation between inward-open and outward-open conforma
tions. We aim to understand design principles of these precise, 
yet dynamic nano-machines developed by nature.

Functional dynamics of biomolecular machines involve 
wide spectrum of intricate motions and reactions. In order to 
understand such dynamics, we need a multiscale approach to 
cover full range of these motions and reactions. Conventional 
atomistic molecular dynamics simulations alone cannot cover 
millisecond-long (or even longer) functional dynamics, espe
cially for a large system like typical biomolecular machines 
with more than hundreds of thousand atoms including water 

molecules. Thus, we use both atomistic and coarse-grained 
molecular simulations, as well as kinetic models based on 
statistical mechanics, to tackle this problem.

We have been particularly focusing on ATP synthase that 
produces most of ATP required for living activities. The ATP 
synthase is composed of two rotary motors, Fo and F1. The Fo 
motor is embedded in membrane and its rotation is driven by 
proton gradient. The F1 motor is a catalytic part that produces 
ATP from ADP and Pi. However, the F1 motor by itself 
(F1-ATPase) rotates the central stalk, γ-subunit, in the opposite 
direction by hydrolyzing ATP. Thus, the two motors are 
driven by different energy sources and rotate in the opposite 
directions. In order to understand how ATP synthase works, 
we have to look into both individual motors and ATP synthase 
as a whole.
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1.  Mechanochemical Coupling Mechanism 
of F1-ATPase

Many single-molecule studies as well as crystallographic 
studies have clarified how the γ-subunit rotation is coupled to 
ATP hydrolysis reactions at three catalytic sites of F1. As 
summarized in Figure 1B, main points are, 1) 120° step 
inferred from three-fold symmetry is further divided into 80° 
and 40° substeps, 2) the 80° substep is driven by ATP binding 
and ADP release, 3) the 40° substep is driven by Pi release and 
ATP hydrolysis reaction, 4) typical crystal structures cor
respond to catalytic dwell (before 40° substep). There are still 
some remaining questions, though. What is the timing of Pi 
release: Just after the hydrolysis reaction or after ADP release? 
What conformation does it take in ATP-binding dwell (before 
80° substep)?

We resolved the timing of Pi release by using atomistic 
molecular dynamics simulations.1) The question is, essentially, 
from which catalytic site, DP-site or E-site, Pi is released. 
Since the Pi release takes ~millisecond, a biasing method 
called metadynamics was employed to facilitate the functional 
dynamics. Different pathways were observed depending on 
the site Pi was released. From the E-site it went through 
P-loop toward outside of the ring structure, while from the 
DP-site it went through switch II toward inside of the ring 
structure (Figure 1C). We estimated mean first-passage time 
from free energy profile (Figure 1D) and diffusion coefficient 
and concluded that Pi is release from the E-site. That is, Pi is 
released after ADP release, which is unique among other 
members of ATPases.

We also identified conformational state of the ATP-binding 
dwell by combining single-molecule FRET measurements and 
systematic structural analysis.2) We found that an ε-inhibited 
E. Coli structure that has half-closed βDP and loose αβE 
interface is consistent with the conformation taken in the ATP-
binding dwell.

Figure 1.  Mechanochemical coupling scheme and Pi release in 

F1-ATPase.

2.  Torsional Elasticity and Friction of 
Rotor in FoF1-ATP Synthase

It has been known that there is a symmetry mismatch 
between Fo c-ring and F1 α3β3 ring. The F1 α3β3 ring has 
(pseudo) three-fold symmetry, while the Fo c-ring in animal 
mitochondria has 8-fold symmetry. Thus, the common rotor, 
γ-subunit, has to rotate by 120° steps (or 80°+40° substeps) in 
F1 part, while it has to rotate by 45° steps in Fo part. There
fore, it has to have torsional elasticity to solve the mismatch. 
In order to estimate torsional elasticity as well as viscosity of 
the γ-rotation, we built a simple viscoelastic model (Figure 
2B) and fitted it against atomistic simulation trajectories in 
which external torque was applied on γ.3)

The estimated torsional elasticity is consistent with values 
from single-molecule experiments. By using this elasticity, we 
identified pathways and associated free energies of the cou
pled FoF1 rotation (Figure 2C). It turned out that with the two-
substep F1 the pathway is blocked by high-energy states. To 
solve this situation, F1 needs three substeps as was measured 
for human mitochondrial F1 recently. From the estimated 
torsional friction, we predict that γ-rotation can be as fast as 1 
MHz and this fast rotation can be observed with an attached 
bead as small as 20 nanometer diameter.

Figure 2.  Viscoelastic model of FoF1-ATP synthase.
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