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Activity of life is supported by various molecular machines 
made of proteins. Protein molecular machines are tiny, but 
show very high performance, and are superior to man-made 
machines in many aspects.

One of the representatives of protein molecular machines 
is linear and rotary molecular motors (Figure 1). Molecular 
motors generate mechanical forces and torques that drive their 
unidirectional motions from the energy of chemical reaction or 
the electrochemical potential across the cell membrane.

We will unveil operation principles of molecular motors 
with advanced single-molecule functional analysis and struc-
tural analysis. With the help of computer science, we will also 
engineer new, non-natural molecular motors to understand 
their design principles. Our ultimate goal is controlling living 
organisms with created molecular machines.

Figure 1.  Protein molecular machines. (Left) A linear molecular 

motor chitinase A. (Center and Right) Rotary molecular motors 

F1-ATPase and V1-ATPase, respectively.
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1.  One Nanometer Steps and Rate-Limiting 
Step of Serratia marcescens Chitinase A 
Resolved by Gold Nanoprobe1)

Serratia marcescens chitinase A (SmChiA) is a mono-
meric linear molecular motor moving on and hydrolyzing 
crystalline chitin processively. We have directly resolved steps 
and pauses in the motion of SmChiA with high-resolution 
single-molecule imaging analysis with gold nanoparticle. By 
using total internal reflection dark-field microscopy and 40-nm 
gold nanoparticle as a low-load probe, movement of SmChiA 
was observed at 1,000–2,000 frames/s with 0.3 nm localiza-
tion precision (Figure 2). The step sizes were 1.1 nm and –1.2 
nm for forward and backward steps (Figure 3), respectively, 
consistent with the length of the product, chitobiose (~1 nm). 
The ratio of forward to backward steps was 5.5, corresponding 
to the energy difference of 1.7 kBT. Frequent backward steps 
and low energy difference indicate that SmChiA operates as 
the Brownian ratchet. Furthermore, detailed analysis of the 
distribution of pause duration revealed that the rate-limiting 
step of chemo-mechanical coupling of SmChiA is the decrys-
tallization of single polymer chain from the crystalline chitin, 
not bond cleavage and product release. These results give us 
important insights to engineer non-natural chitinases which 
show better performances than the natural ones.

Figure 2.  Example of stepping movement of SmChiA.

Figure 3.  Distribution of step size of SmChiA.

2.  Chemo-Mechanical Coupling Scheme of 
Rotary Molecular Motor Enterococcus 
hirae V1-ATPase2)

A rotary molecular motor V-ATPase (Figure 4, left) is an 
ion pump driven by ATP hydrolysis. To understand the chemo-
mechanical energy conversion mechanism, we conducted 
single-molecule analysis of V1 moiety of Enterococcus hirae 
V-ATPase (Figure 4, right). We found that 120° steps (3 
pausing positions per turn) reflecting the coordinations among 
three catalytic sites of V1 were further divided into 40° and 80° 
substeps. At low ATP concentration ([ATP]), pause dura tion 
before 40° substep was dependent on [ATP], indicating that 
ATP binding triggers 40° substeps. On the other hand, at high 
[ATP], two time constants (both ~1 ms) independent on [ATP] 
were obtained. When slowly hydrolyzing ATPγS was used as a 
substrate, the pause before 40° step became longer (140 ms), 
indicating that cleavage of phosphate bond of ATP occurs 
during this pause. Time constant (2.5 ms) of pause duration 
before 80° step was also [ATP] independent. In the presence of 
ATPγS and high concentration of ADP, 80° backward steps 
were frequently observed, indicating that ADP binding triggers 
80° forward step. From these results and rotation behavior of 
an arginine finger mutant, we proposed a model of chemo-
mechanical coupling scheme of V1 (Figure 5).

Figure 4.  V-ATPase (left) and single-molecule rotation assay of V1 

(right).

Figure 5.  Chemo-mechanical coupling scheme of V1.

References
1) A. Nakamura and R. Iino, in preparation.

2) T. Iida, Y. Minagawa, H. Ueno, F. Kawai, T. Murata and R. Iino, in 

preparation.




