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Light is very common in daily life, on the other hand, light 
has many interesting physical properties, for example, con-
stancy of velocity, wave-particle duality, etc. The study of 
light itself is still important in modern physics.

Light is electro-magnetic field, same as radio wave, how-
ever, the measurement of the waveform of light is not easy 
task even in the 21st century. The difficulty comes from the 
extremely fast oscillation of the light wave. The oscillation 
frequency of light wave is the order of hundred terahertz (THz 
= 1012 Hz), in other words, the oscillation period of light wave 
is the order of femtosecond (fs = 10–15 s).

In 2013, we have developed a new method for the mea-
surement of light wave. It is called FROG-CEP, frequency-
resolved optical gating capable of carrier-envelope determina-
tion. Our method does not need attosecond pulses, even self-
referencing is possible. The electric field oscillations of 
infrared light with the period of several femtoseconds were 
clearly measured with the method as is shown in Figure 1.

Currently, amplitude modulation and phase modulation are 
common encoding techniques in optical communication. If we 
can encode information in the shape of the light wave itself, the 

communication speed becomes 3 orders of magnitude faster. 
We believe that our method, FROG-CEP, becomes very impor-
tant to realize such communication technology.

Other than FROG-CEP, ultrabroadband mid-infrared con-
tinuum generation through filamentation, single-shot detection 
of ultrabroadband mid-infrared spectra, and development of 2 
µm ultrafast lasers have been realized in our laboratory. We 
are developing such cutting edge technologies for ultrafast 
laser science.

Figure 1.  Infrared light waveforms measured with FROG-CEP. The 

phase difference between the two infrared pulses was clearly measured.
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1.  High Harmonic Generation in Solids 
Driven by Sub-Cycle Mid-Infrared Pulses 
from Two-Color Filamentation

High-harmonic generation (HHG) is one of the most 
important nonlinear processes for the generation of attosecond 
pulses. In the last few years, HHG in solid materials is attract-
ing a lot of attention in the fields of ultrafast science and solid-
state physics. Since the atomic density is much higher in solids 
than in gases, solid-state HHG would be much more efficient 
than the HHG in atomic gases. The solid-state HHG would be 
a key technology to realize a compact solid-state attosecond 
pulse generator or petahertz electronics.

Naturally, experimental study with well-characterized 
single-cycle or sub-cycle pulses is one of the most straight-
forward approaches to investigate highly nonlinear process. 
Here, we report the demonstration of the HHG in a Si mem-
brane driven by carrier-envelope phase (CEP) controlled sub-
cycle mid-infrared (MIR) pulses generated through two-color 
filamentation. 

The light source was based on a Ti:Sapphire multipass 
amplifier system. The generation scheme of the sub-cycle MIR 
pulses is the same as that published before.1,2) In brief, the 
fundamental (800 nm, ω1) and second-harmonic (400 nm, ω2) 
pulses were gently focused into nitrogen, in which the sub-
cycle MIR pulse (ω0) was generated by using four-wave 
mixing (ω1 + ω1 − ω2 → ω0) through filamentation. As is the 
case with the difference frequency generation, the CEP of the 
MIR pulse is passively stabilized.

Figure 2(a) shows a typical power spectrum and (absolute) 
spectral phases of the MIR pulses obtained with FROG-CEP 
measurements.3) The spectrum covers the entire MIR region, 
corresponding to more than three octaves, and the spectral 
phase has some nonlinear term; namely, the pulse is slightly 
chirped. The pulse duration of the MIR pulse is estimated as 
~8.5 fs at FWHM, corresponding to 0.64 optical cycles at 4 
µm center wavelength. The waveforms of MIR pulses for the 

phases of −0.10π and −0.77π at 4 µm are shown in Figure 
2(b). We can control the CEP of the MIR pulse very precisely 
by tilting the delay plate on a kinematic mount with a piezo-
electric inertia actuator.

Figure 3(a) shows the CEP dependence of the high-
harmonic (HH) spectrum. We continuously recorded the HH 
spectra while scanning the CEP from −π to π. The HH spectra 
reach <300 nm, the ultraviolet region. The spectrum shifts to 
the higher photon energy region by increasing the CEP (indi-
cated by dotted lines), and the same spectrum appears every π 
phase shift.

To investigate the complex structure and CEP dependence 
of the HH spectrum, we numerically simulated the CEP 
dependence of the HH spectrum based on the optical Bloch 
equations generalized to the case of a two-band semi-
conductor. In this numerical simulation, we used the wave-
form of the sub-cycle MIR pulse measured with FROG-CEP 
as a driving field.

Figure 3(b) shows the simulation result of the CEP depend-
ence of the HH spectrum. As is the case with the experimental 
results in Figure 3(a), the spectral shape shifts to a higher 
photon energy region by increasing the CEP of the MIR pulse, 
and the same spectrum appears at every π phase shift. In 
addition, discontinuous change of the CEP dependence of the 
HH spectrum at around 3.1 eV, which corresponds to the 
direct band gap energy, is also reproduced [see dashed lines in 
Figures 3(a) and 3(b)]. We believe that the CEP dependence 
change is due to the increase in the imaginary part of the 
refractive index at around the direct band gap. In this simula-
tion, the main features of the experimental result are qualita-
tively reproduced.
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Figure 3.  CEP dependence of the HH spectrum. (a) Experimental 

result. (b) Numerical simulation result obtained from optical Bloch 

equations.

Figure 2.  a) Power spectrum (shaded curve) and (absolute) spectral 

phases (closed circles and squares) of the MIR pulses obtained with 

the FROG-CEP technique. (b) Retrieved waveforms of the MIR 

pulses.




