
88

RESEARCH ACTIVITIES

•	 H. Sakai, H. Kan and T. Taira, “>1 MW Peak Power Single-Mode 

High-Brightness Passively Q-Switched Nd3+:YAG Microchip 

Laser,” Opt. Express 16, 19891–19899 (2008).

•	 M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara and T. 

Taira, “High Peak Power, Passively Q-Switched Microlaser for 

Ignition of Engines,” IEEE J. Quantum Electron. 46, 277–284 

(2010).

•	 T. Taira, “Domain-Controlled Laser Ceramics toward Giant Micro-

Photonics,” Opt. Mater. Express 1, 1040–1050 (2011).

•	 H. Ishizuki and T. Taira, “Half-Joule Output Optical-Parametric 

Oscillation by Using 10-mm-Thick Periodically Poled Mg-Doped 

Congruent LiNbO3,” Opt. Express, 20, 20002–20010 (2012).

•	 R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji and T. Taira, “Effi

cient Second to Ninth Harmonic Generation Using Megawatt Peak 

Power Microchip Laser,” Opt. Express 21, 28849–28855 (2013).

Selected Publications

Keywords	 Solid-State Lasers, Nonlinear Optics, Micro Solid-State Photonics

TAIRA, Takunori
Associate Professor
[taira@ims.ac.jp]

Education
1983	 B.A. Fukui University
1985	 M.S. Fukui University
1996	 Ph.D. Tohoku University

Professional Employment
1985	 Researcher, Mitsubishi Electric Corp.
1989	 Research Associate, Fukui University
1993	 Visiting Researcher, Stanford University ( –1994)
1998	 Associate Professor, Institute for Molecular Science
	 Associate Professor, The Graduate University for Advanced 

Studies

Awards
2004	 Persons of Scientific and Technological Research Merits, 

Commendation by Minister of Education, Culture, Sports, 
Science and Technology, Japan

2010	 OSA Fellow Award, The Optical Society (OSA)
2012	 SPIE Fellow Award, The International Society for Optical 

Engineering (SPIE)
2014	 IEEE Fellow Award, The Institute of Electrical and 

Electronics Engineers (IEEE)

Member
Assistant Professor

ISHIZUKI, Hideki

Post-Doctoral Fellow
SATO, Yoichi
ZHENG, Lihe
YAHIA, Vincent
LIM, Hwanhong

Research Fellow
KAUSAS, Arvydas
KAWASAKI, Taisuke

Visiting Scientist
Florent Cassouret*

Secretary
ONO, Yoko
INAGAKI, Yayoi

Micro Solid-State Photonics
Center for Mesoscopic Sciences
Division of Supersensitive Measurements

“Micro Solid-State Photonics,” based on the micro domain 
structure and boundary controlled materials, opens new horizon 
in the laser science. The engineered materials of micro and/or 
microchip solid-state, ceramic and single-crystal, lasers can 
provide excellent spatial mode quality and narrow linewidths 
with enough power. High-brightness nature of these lasers has 
allowed efficient wavelength extension by nonlinear frequency 
conversion, UV to THz wave generation. Moreover, the quasi 
phase matching (QPM) is an attractive technique for compen
sating phase velocity dispersion in frequency conversion. The 
future may herald new photonics.

Giant pulse > 10 MW was obtained in 1064nm microchip 
lasers using micro-domain controlled materials. The world 
first laser ignited gasoline engine vehicle, giant-pulse UV (355 
nm, 266 nm) and efficient VUV (118 nm) pulse generations 
have been successfully demonstrated. Also, few cycle mid-IR 
pulses for atto-second pulses are demonstrated by LA-PPMgLN. 
We have developed new theoretical models for the micro-
domain control of anisotropic laser ceramics. These functional 
micro-domain based highly brightness/brightness-temperature 
compact lasers and nonlinear optics, so to speak “Giant Micro-

photonics,” are promising. Moreover, the new generation of 
micro and/or microchip lasers by using orientation-controlled 
advanced ceramics can provide extreme high performances in 
photonics.

Figure 1.  Giant micro-photonics.
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1.  Thermal Reduction through Distributed 
Face Cooling (DFC) in a High Power Giant-
Pulse Tiny Laser

Sapphire/Nd3+:YAG based DFC chip was obtained with 
thermal reduction as compared with those from conventional 
Nd3+:YAG chip. The CW diode laser pumped round-trip 
cavity loss was 0.51% from a 9-disk DFC chip, which was 
close to theoretically calculated total Fresnel reflection loss of 
0.2% from 8 Sapphire/Nd3+:YAG interfaces. The depolariza
tion ratio from 8-disk DFC chip was 40 times lower than that 
from YAG/Nd3+:YAG chip. The DFC chip underwent no 
crack at pump power of 86 W while Nd3+:YAG single chip 
suffered crystal crack under pump power around 54 W, as 
shown in Figure 2.

Over megawatt peak power from DFC tiny integrated laser 
was demonstrated at 1 kHz with 3-pulse burst modes. It is 
concluded that DFC structure could relieve thermal effects as 
expected.

Figure 2.  Output power from DFC chip under continuous wave laser 

pump. TD is the temperature of diode laser.

2.  Q-switching Laser Oscillation of 
Microdomain-Controlled Yb:FAP Laser 
Ceramics

The process control of microdomains with quantum me
chanical calculations is expected to increase the optical power 
extracted per unit volume in gain media. Design of extensive 
variables allows us to evaluate the crystalline magnetic aniso
tropy in microdomains. Using this process control, we gen
erate over 2 kW laser output from orientation-controlled 
microdomains made of Yb:Fluoroapatite (FAP).

In Figure 3, we compared the repetition rate and extraction 
energy density as the figure of merit for Giant-microphotonics, 
where our microdomain-controlled Yb:FAP laser ceramics 
showed excellent future possibility of power scaling.

Figure 3.  The figure of merit for Giant-microphotonics.

3.  Crystal Quartz for High-Intensity,  
Sub-Nanosecond Wavelength Conversion

Crystal quartz for high-intensity wavelength conversion 
was evaluated. Pure durability of crystal quartz for sub-ns 
pulse region at 1.064 µm irradiation was measured as 602 
GW/cm2, which was 2-times higher than undope YAG crystal. 
QPM-structured quartz constructed by multi-plate stacking 
was evaluated by a sub-ns high-energy MCL-MOPA pump
ing. Maximum SH energy of 250 µJ could be obtained at Ep = 
52 mJ with conversion efficiency of 0.48% as shown in Figure 
4(a). Increasing characteristics of maximum ESH on plate-
stacking number N at Ep = 50~55 mJ is shown in Figure 4(b). 
Our experimental results well fitted the N2-characteristics of 
the QPM characteristics.

As a result, availability of crystal quartz for high-intensity 
wavelength conversion could be demonstrated. QPM quartz is 
expected for both high-intensity operation and short-wavelength 
conversion.

Figure 4.  (a) SH energy on pump energy at N = 48, and (b) SH 

energy on stack number N.
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