Angle-Resolved Photoemission Study on Strongly Correlated Electron Materials

UVSOR Synchrotron Facility
Division of Advanced Solid State Physics

TANAKA, Kiyohisa
Associate Professor
[k-tanaka@ims.ac.jp]

Keywords
Strongly Correlated Electron System, Synchrotron Light, Photoemission

Strongly correlated electron materials has attracted more attentions in the last few decades because of their unusual and fascinating properties such as high-T_c superconductivity, giant magnetoresistance, heavy fermion and so on. Those unique properties can offer a route toward the next-generation devices. We investigate the mechanism of the physical properties as well as the electronic structure of those materials by using angle-resolved photoemission spectroscopy (ARPES), a powerful tool in studying the electronic structure of complex materials, based on synchrotron radiation.

Selected Publications

* carrying out graduate research on Cooperative Education Program of IMS with Osaka University
† carrying out graduate research on Cooperative Education Program of IMS with Nagoya University
1. Suppression of Superconducting Gap on Ba$_{1-x}$K$_x$Fe$_2$As$_2$ Observed by Angle-Resolved Photoemission Spectroscopy

Iron-based superconductors have a complex phase diagram with the antiferromagnetic, structural, and superconducting (SC) transition phases as well as high-T_c cuprates superconductors. Recently, nematicity, defined as broken rotational symmetry [a trigonal (C_3)-to-orthorhombic (C_2) structural transition], has shed light on the understanding of the mechanism on the iron-based superconductivity in the underdoped regime. In hole-doped BaFe$_2$As$_2$ (Ba122) system, thermal expansion, specific heat, and neutron diffraction measurements of Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ and Ba$_{1-x}$K$_x$Fe$_2$As$_2$ (K-Ba122) at a certain hole concentration have revealed the magnetic order without Cu symmetry breaking in the underdoped regime. Measured of Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ with x = 0.25 and 0.3 at the kF's of the α and γ bands are shown in Figures 1(c1)–(2d) for comparison. While the SC peak (x = 0.3) is far from the E_F, indicating that the SC gap is observed on the α and γ FSs, we found that the SC peak of x ~ 0.25 moves towards E_F, which indicates the decrease or almost close of SC gaps for the γ band.

Figure 2 gives the detailed SC gap distribution of the electron bands designated as ϵ and δ for the inner and outer electron FSs, respectively. To precisely determine the SC gap size and its momentum dependence, we have performed an ARPES study at several k_F and k_z points of the ϵ and δ bands. For the k_z direction, while the SC gap for the δ band shows an isotropic gap [Figure 2(g)], the EDC peak position reflecting the SC gap for the ϵ band does not seem to be constant, namely, the peak position as shown by a gray circle decreases in going from the A to M points [Figure 2(i)]. This indicates that an anisotropic SC gap is exhibited along the k_z direction for the ϵ FS.

The present ARPES study indicates that the T_c suppression of K-Ba122 (x ~ 0.25) corresponds to the suppressed SC gap on the γ FS and the k_z dependent SC gap on the ϵ FS. According to the previous ARPES study, the SC gap size on hole FSs was almost identical in optimally doped K-Ba122, which was interpreted by the s^\pm-wave SC gap symmetry due to orbital fluctuations. Though SC gaps on the α and β FSs of K-Ba122 (x ~ 0.25) are identical, that on the γ FS seems not to be explained directly by the orbital fluctuation. The SC gap might be suppressed in the presence of the C_4-magnetic fluctuation, assuming that the presence of the C_4 symmetry of the electronic structure with disappearance of the orbital order. We also find that the ARPES intensity plots of K-Ba122 (x = 0.21, 0.3) at the E_F band show the band folding of the electron-like band, which is known to be observed below the SDW transition temperature in the underdoped regime, but disappears in x ~ 0.25 sample (not shown). Probably recently reported antiferroic electronic instability is suppressed around x ~ 0.25 because of the C_4-magnetic phase fluctuation. Thus, the experimental evidence indicates that the SC gap on the γ FS of K-Ba122 (x ~ 0.25) is strongly influenced by the C_4-magnetic phase.

2. Development of Micro-Focused Beam ARPES

A soft X-ray beamline BL5U has been open for users from 2016 and used as high energy resolution ARPES beamline. By introducing a final focusing mirror close to the sample position (~50 mm), the synchrotron light whose original size was 400 (H) × 120 (V) is successfully focused to 23 (H) × 40 (V) μm. ARPES study on small samples or inhomogeneous samples is now available.

References