Development of Heterogeneous Catalysis toward Ideal Chemical Processes

Department of Life and Coordination-Complex Molecular Science Division of Complex Catalysis

VisiteV	 Education 1984 B.S. Hokkaido University 1990 Ph.D. Hokkaido University Professional Employment 1988 Research Associate, Hokkaido University 1990 Assistant Professor, Hokkaido University 1991 Assistant Professor, Hokkaido University 1992 Lecturer, Kyoto University 1997 Professor, Nagoya City University 2000 Professor, Institute for Molecular Science Professor, The Graduate University for Advanced Studies 2007 Research team leader, RIKEN 2014 Distinguished Professor, Three George University 2008 Research Project Leader, JST CREST Project (-2008) 2008 Research Project Leader, NEDO Project (-2012) 2011 Deputy Research Project Leader, JST ACCEL Project (-2016) 2014 Research Project Leader, JST ACCEL Project (-2019) Awards 1991 Eisai Award, Synthetic Organic Chemistry 1998 The Pharmaceutical Society of Japan Award for Young Scientist 2007 MEXT Ministerial Award for Green Sustainable Chemistry 2017 Inoue Prize for Science 2014 The Commendation for Science and Technology by the Minister of MEXT (Research Category) 	Assistant Professor OSAKO, Takao HAMASAKA, Go Post-Doctoral Fellow PAN, Shiguang HIRATA, Shuichi PUTRA, Anggi Eka KIM, Kiseong SUGIYAMA, Yuya Graduate Student ICHII, Shun SHEN, Guanshuo NIIMI, Ryoko TANI, Kazuki Technical Fellow TORII, Kaoru TAZAWA, Aya Secretary SASAKI, Tokiyo TANIWAKE, Mayuko

Transition Metal Catalysis, Green Chemistry, Organic Synthesis

Our research interests lie in the development of transition metal-catalyzed reaction systems toward ideal (highly efficient, selective, green, safe, simple, etc.) organic transformations. In particular, we have recently been developing the heterogeneous aquacatalytic systems, continuous flow catalytic systems, and super active catalysts working at ppm-ppb loading levels. Thus, for example, a variety of palladium catalysts were designed and prepared promoting carbon– carbon bond forming reactions at ppm-ppb loading levels (Figure 1).

Selected Publications

- R. David and Y. Uozumi, "Recent Advances in Palladium-Catalyzed Cross-Coupling Reactions at ppm-ppb Molecular Catalyst Loadings (review)," *Adv. Synth. Catal.* 360, 602–625 (2018).
- T. Osako, K. Torii, S. Hirata and Y. Uozumi, "Chemoselective Continuous-Flow Hydrogenation of Aldehydes Catalyzed by Platinum Nanoparticles Dispersed in an Amphiphilic Resin," ACS Catal. 7, 7371–7377 (2017).
- Y. M. A. Yamada, S. M. Sarkar and Y. Uozumi, "Self-Assembled Poly(imidazole-palladium): Highly Active, Reusable Catalyst at Parts per Million to Parts per Billion Levels," *J. Am. Chem. Soc.* 134, 3190–3198 (2012).
- G. Hamasaka, T. Muto and Y. Uozumi, "Molecular-Architecture-Based Administration of Catalysis in Water: Self-Assembly of an

Amphiphilic Palladium Pincer Complex," *Angew. Chem., Int. Ed.* **50**, 4876–4878 (2011).

1 (1 mol ppb to 1 mol ppm

MeOH. 50 °C. 24-72 h

TON: up to 500,000,000

1 (1 mol ppb to 100 mol ppm) base, NMP 140-160 °C, 15-72 h

TON: up to 870.000.000

Figure 1. Typical Examples of Pd-Catalyzed Carbon–Carbon Bond Forming Reactions with ppm-ppb Loading Levels of an NNC-Pincer

NNC-Pincer Palladium Complex (1)

G. Hamasaka, S. Ichii and Y. Uozumi, Adv. Synth. Catal. 360, 1833-1840 (2018)

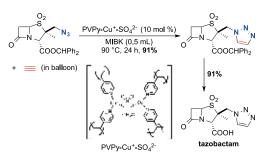
up to 99% vield

up to 100% vield

ο Δc

(b) Mizoroki-Heck reaction

Pd Comples.


Member Visiting Professor

MASE, Toshiaki

- Y. Uozumi, Y. Matsuura, T. Arakawa and Y. M. A. Yamada, "Asymmetric Suzuki-Miyaura Coupling in Water with a Chiral Pallasium Catalyst Supported on Amphiphilic Resin," *Angew. Chem., Int. Ed.* **48**, 2708–2710 (2009).
- Y. M. A. Yamada, T. Arakawa, H. Hocke and Y. Uozumi, "A Nanoplatinum Catalyst for Aerobic Oxidation of Alcohols in Water," *Angew. Chem., Int. Ed.* **46**, 704–706 (2007).
- Y. Uozumi, Y. M. A. Yamada, T. Beppu, N. Fukuyama, M. Ueno and T. Kitamori, "Instantaneous Carbon–Carbon Bond Formation Using a Microchannel Reactor with a Catalytic Membrane," *J. Am. Chem. Soc.* 128, 15994–15995 (2006).

1. Self-Assembled Polymeric Pyridine Copper Catalysts for the Huisgen Cycloaddition with Alkynes and Acetylene Gas: Application in Synthesis of Tazobactam¹⁾


Novel convoluted polymeric pyridine copper(I) catalysts PVPy-Cu were developed for Huisgen cyclization of organic azides with alkynes and acetylene gas. They were readily prepared by our molecular convolution of CuSO₄·5H₂O and poly(4-vinylpyridine) (PVPy) in the presence of sodium ascorbate with/without various sodium salts in water. Their structural investigation was conducted with XANES and EXAFS as well as DFT calculation. The Huisgen cycloaddition of a variety of alkynes and acetylene gas was carried out with 100 to 800 mol ppm Cu of PVPy-Cu in water whose turnover numbers reached up to 10,000. This catalytic system was applied to synthesis of tazobactam, an inhibitor of bacterial β -lactamases.

Figure 2. Synthesis of Tazobactam through the Huisgen Cyclization with Acetylene Gas Using a Polymeric Cu Catalyst.

2. Iterative Preparation of Platinum Nanoparticles in an Amphiphilic Polymer Matrix: Regulation of Catalytic Activity in Hydrogenation^{2,3)}

We have demonstrated that iteration of the seeded preparation of platinum nanoparticles dispersed in an amphiphilic polystyrene–poly(ethylene glycol) resin (ARP–Pt) regulates the activity of the catalyst in the hydrogenation of aromatic compounds in water and is accompanied by a slight modifi-

Figure 3. Regulated Hydrogenation with Iteratively Generated Polymeric nanoPt Catalysts.

cation of its structural properties. Platinum nanoparticles dispersed in the amphiphilic polymer prepared through four iterations (ARP–Pt G5) showed a much higher catalytic activity than that of the initial ARP–Pt (G1) in the hydrogenation of aromatic compounds in water. These results suggest that iteration of the seeded preparation of nanoparticles can be an effective method for the precise regulation of the catalytic activity and the structural properties of the resulting catalyst.

3. Solvent-Free A³ and KA² Coupling Reactions with Mol ppm Level Loadings of a Polymer-Supported Copper(II)-Bipyridine Complex for Green Synthesis of Propargylamines⁴⁾

A copper(II)–bipyridine complex immobilized on amphiphilic polystyrene–poly(ethylene glycol) (PS–PEG) resin (PS– PEG-BPy–CuBr₂) has been developed. The immobilized copper(II)–bipyridine complex at a mol ppm level of loading efficiently catalyzed the three-component coupling of aldehydes or ketones, amines, and alkynes (A³ or KA² coupling) under solvent-free conditions to give the corresponding propargylamines in good-to-excellent yields. Moreover, a tengram-scale green syntheses of propargylamines proceeded with excellent atom economy (*E* factor \geq 0.38) through a solvent-free A³ coupling using 5 mol ppm of PS–PEG-BPy– CuBr₂. The total turnover number and turnover frequency of the catalyst reached as high as 178 800 and 7450 h⁻¹, respectively.

Figure 4. Preparation of Propargylamines by A³ Coupling Reaction with ppm Loading Level of a Polymeric Cu(II) Catalyst.

References

- H. Hu, A. Ohno, T. Mase, Y. Uozumi and Y. M. A. Yamada, Org. Pro. Res. Dev. 23, 493 (2019).
- 2) T. Osako, J. Srisa, K. Torii, G. Hamasaka and Y. Uozumi, *Synlett*, in press (2019). DOI: 10.1055/s-0037-1611813
- T. Osako, K. Torii, S. Hirata and Y. Uozumi, ACS Catal. 7, 7371– 7377 (2017).
- 4) S. Yan, S. Pan, T. Osako and Y. Uozumi, ACS Sus. Chem. Eng. 7, 9097 (2019).