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Functional dynamics plays an important role when bio-
molecular machines fulfill their functions. Motor proteins 
move on the rail or rotate relative to the stator unidirectionally 
by using chemical energy. Transporter proteins transport their 
substrates across the membrane by changing their confor-
mation between the inward-open and outward-open states. We 
aim to clarify molecular mechanism of these precise, yet 
dynamic nano-machines developed by nature.

Functional dynamics of biomolecular machines involve 
wide spectrum of intricate motions and reactions. In order to 
understand such dynamics, we need a multiscale approach to 
cover full range of these motions and reactions. Conventional 
atomistic molecular dynamics (MD) simulations alone cannot 
cover millisecond-long (or even longer) functional dynamics, 
especially for a large system like typical biomolecular machines. 
Thus, we use techniques like importance sampling, coarse-
graining, and statistical/kinetic modeling to tackle this problem.

We have been working on biomolecular motors such as 
ATP synthase and chitinase. ATP synthase is a rotary motor 
that produces most of ATP required in the cell. It is composed 
of two rotary motors: Fo and F1. Fo motor is embedded in the 
membrane driven by proton gradient, while F1 motor is driven 

by ATP hydrolysis reaction. We studied how rotation of F1 is 
caused by elementary steps such as product release from the 
catalytic site. Chitinase is a new type of molecular motor that 
uses hydrolysis energy of single chitin chain, a polysaccharide, 
for its unidirectional motion. The sliding motion of chitin 
chain into the catalytic site of chitinase was studied by atomistic 
simulations. We also devel oped a novel framework to estimate 
chemical-state-dependent free energy profile and diffusion 
coefficient from single-molecule trajectories.

Transporters are membrane proteins that transport their 
substrates across the membrane. We have studied Na+/H+ 
antiporter that exchanges sodium ions and protons inside and 
outside the cell. The ion-transport cycle was simulated in 
atomic detail with the transition path sampling technique. The 
simulations predicted the mutation that can speed up the ion 
transport, which was confirmed by experiments. Another 
membrane-associated protein, F-BAR protein Pacsin1 that 
remodels the membrane, is our interest too. The curvature 
induction and sensing of Pacsin1 on the membrane was stud-
ied by multiscale MD simulations using both all-atom and 
coarse-grained models.
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1.  Mechanism of Unidirectional Motions of 
Chitinase

Processive cellulase and chitinase recently have been cast 
new light as a different type of biomolecular motors that use 
hydrolysis energy of polysaccharides for their unidirectional 
movements. We used single-molecule trajectories to estimate 
an underlying diffusion model with chemical-state-dependent 
free energy profile.1) To consider nonequilibrium trajectories 
driven by the chemical energy consumed by biomolecular 
motors, we developed a novel framework based on a hidden 
Markov model, wherein switching among multiple energy 
profiles occurs reflecting the chemical state changes in motors. 
The chemical-state-dependent free energy profile underlying 
the burnt-bridge Brownian ratchet mechanism of processive 
chitinase was determined.1)

2.  Mechanism of Na+/H+ Antiporter and 
Engineering of a Faster Transporter

Na+/H+ antiporters control pH and Na+ concentration in 
the cell by exchanging sodium ions and protons across lipid 
membranes. They belong to the cation/proton antiporter (CPA) 
superfamily, and prevail in all domains of life. The archaeal 
Na+/H+ antiporters PaNhaP from Pyrococcus abyssi and 
MjNhaP1 from Methanocaldococcus jannaschii as well as 
human NHE1, which is linked to a wide spectrum of diseases 
from heart failure to autism and has no structure solved yet, 
are electroneutral antiporters of the CPA1 family, exchanging 
one proton against one sodium ion. As a model system in 
mechanistic studies of electroneutral Na+/H+ exchange, we 
studied the transport mechanism of PaNhaP.2)

Na+/H+ antiporters use the gradient of either sodium ion or 
proton to drive the uphill transport of the other ion (Figure 
1A). The conformational transition of the transporter makes 
the ion-binding site accessible from either side of the mem-
brane in the alternating manner. For PaNhaP, the inward-open 
conformation was obtained by X-ray crystallography, while 
the outward-open conformation is not known experimentally. 
We modelled the outward-open conformation by MDFF flex-
ible fitting to the low-resolution outward-open structure of the 
homologous MjNhaP1 from cryo-EM, followed by the long 
equilibrium MD simulations. It was shown that the transporter 
domain moves ~3.5 Å in the direction normal to the mem-
brane to take the outward-open state (Figure 1B).

The inward-open and outward-open conformations 
described above only provides the end points of the ion-
transport. The transition dynamics between the two states is 
central to the transport mechanism, revealing at once rate-
limiting steps, substrate pathways, and the opening and clos-
ing of the gate preventing ion leakage. However, with ion 
exchange occurring on a timescale of seconds at ambient 
conditions, regular MD simulations are far too slow to resolve 
transitions. Instead, we can resort to importance sampling of 
transition dynamics. To sample unbiased transition paths 

between the inward- and outward-open states, we used tech-
niques from the transition path sampling.

In analysis of the transition paths, we found hydrophobic 
gates above and below the ion-binding site, which open and 
close in response to the domain motions (Figure 1C). From the 
reaction coordinate analysis, it was shown that open-close 
motion of the outside gate (Ile163-Tyr255) is a rate-limiting 
step of the alternating-access conformational change. Based 
on this result, we weakened the outside gate by mutating the 
residues to both alanine. It was expected that this mutation 
lowers the barrier and makes the ion transport faster. It was 
confirmed by experiments that the ion-transport speed of the 
mutant is indeed twice faster than the wild-type transporter.

Figure 1.  (A) PaNhaP dimer structure. (B) Comparison of the 

transporter domain between the inward-open (blue) and outward-open 

(red) states. (C) The outside (purple) and inside (orange) gates found 

in the transition paths.
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