Functional Dynamics of Biomolecular Machines Revealed by Theoretical Methods

Department of Theoretical and Computational Molecular Science Division of Computational Molecular Science

OKAZAKI, Kei-ichi Associate Professor [keokazaki@ims.ac.jp]

Education

- 2004 B.S. Kyoto University 2006 M.S. Kobe University
- 2006 M.S. Kobe University 2009 Ph.D. Kobe University
- 2009 Ph.D. Kobe Universi

Professional Employment

- 2007 JSPS Research Fellow (DC2), Kobe University
- 2009 JSPS Postdoctoral Fellow (PD), Waseda University
- 2010 Part-time Lecturer, Waseda University
- 2012 JSPS Postdoctoral Fellow for Research Abroad, National Institutes of Health, U.S.A.
- 2014 Postdoctoral Fellow, Max Planck Institute of Biophysics, Germany
- 2016 Research Associate Professor, Institute for Molecular Science
- 2020 Associate Professor, Institute for Molecular Science Associate Professor, The Graduate University for Advanced Studies Award
- 2014 Early Career Award in Biophysics, Biophysical Society of Japan

Keywords

Theoretical Biophysics, Biomolecular Machines, Molecular Motors

Biomolecular machines, such as molecular motors and transporters in the cell, are known to change their structure when they function. For example, ATP synthase, which synthesizes ATP in mitochondria, is a molecular motor that uses chemical energy to rotate. Transporters, which transport substrate molecules across the cell membrane, perform substrate transport by changing their structure between an inwardly and outwardly open structure relative to the membrane. Our goal is to elucidate the mechanism of these elaborate and dynamic nanomachines created by nature at the atomic and molecular level, and to control their functions based on our findings.

We would like to understand the mechanism of biomolecular machines by "seeing" the motion of biomolecular machines at the moment they function, on a computer at the molecular level. However, this is not an easy task, because biomolecular machines are huge molecules, and their functioning time scale is slow (for a molecular scale) at milliseconds or longer. Conventional atomistic molecular dynamics (MD) simulations cannot cover millisecond-long functional dynamics, especially for a large system like typical biomolecular machines. Therefore, we are trying to capture the motion at the moment of function by using methods such as an importance sampling technique, or coarse-graining multiple atoms together.

Member Post-Doctoral Fellow

Secretary

MAHMOOD, Md Iqbal JAUNET-LAHARY, Titouan

CHIBA, Fumika

We have been working on biomolecular motors such as ATP synthase. ATP synthase is a rotary motor that produces most of ATP required in the cell. It is composed of two rotary motors: F_0 and F_1 . F_0 motor is embedded in the membrane driven by proton gradient, while F_1 motor is driven by ATP hydrolysis reaction. We clarified how the rotation of F_1 motor is driven by a key chemical step, P_i release after ATP hydrolysis reaction, by accelerating atomistic MD simulations with external forces.

Transporters are membrane proteins that transport their substrates across the membrane. We have studied Na^+/H^+ antiporter that exchanges sodium ions and protons inside and outside the cell. The ion transport by the Na^+/H^+ antiporter was simulated in atomic detail with the transition path sampling technique to capture the moment of the ion transports. The simulations predicted the mutation that can speed up the ion transport. The mutation was tested in experiments and shown to speed up the ion transport twice faster than the wild type. Therefore, we succeeded in controlling the function of the transporter based on mechanism obtained from simulations.

Selected Publications

- K. Okazaki and G. Hummer, "Phosphate Release Coupled to Rotary Motion of F₁-ATPase," *Proc. Natl. Acad. Sci. U.S.A.* 110, 16468–16473 (2013).
- K. Okazaki and G. Hummer, "Elasticity, Friction, and Pathway of γ-Subunit Rotation in F₀F₁-ATP Synthase," *Proc. Natl. Acad. Sci.*

U.S.A. 112, 10720-10725 (2015).

K. Okazaki, D. Wöhlert, J. Warnau, H. Jung, Ö. Yildiz, W. Kühlbrandt and G. Hummer, "Mechanism of the Electroneutral Sodium/Proton Antiporter PaNhaP from Transition-Path Shooting," *Nat. Commun.* 10, 1742 (2019).

1. Mechanism of Unidirectional Motions of Chitinase

Processive cellulase and chitinase recently have been cast new light as a different type of biomolecular motors that use hydrolysis energy of polysaccharides for their unidirectional movements. We used single-molecule trajectories to estimate an underlying diffusion model with chemical-state-dependent free energy profile.¹⁾ To consider nonequilibrium trajectories driven by the chemical energy consumed by biomolecular motors, we developed a novel framework based on a hidden Markov model, wherein switching among multiple energy profiles occurs reflecting the chemical state changes in motors. The chemical-state-dependent free energy profile underlying the burnt-bridge Brownian ratchet mechanism of processive chitinase was determined.¹⁾

2. Mechanism of Na⁺/H⁺ Antiporter and Engineering of a Faster Transporter

Na⁺/H⁺ antiporters control pH and Na⁺ concentration in the cell by exchanging sodium ions and protons across lipid membranes. They belong to the cation/proton antiporter (CPA) superfamily, and prevail in all domains of life. The archaeal Na⁺/H⁺ antiporters PaNhaP from *Pyrococcus abyssi* and MjNhaP1 from *Methanocaldococcus jannaschii* as well as human NHE1, which is linked to a wide spectrum of diseases from heart failure to autism and has no structure solved yet, are electroneutral antiporters of the CPA1 family, exchanging one proton against one sodium ion. As a model system in mechanistic studies of electroneutral Na⁺/H⁺ exchange, we studied the transport mechanism of PaNhaP.²)

 Na^+/H^+ antiporters use the gradient of either sodium ion or proton to drive the uphill transport of the other ion (Figure 1A). The conformational transition of the transporter makes the ion-binding site accessible from either side of the membrane in the alternating manner. For PaNhaP, the inward-open conformation was obtained by X-ray crystallography, while the outward-open conformation is not known experimentally. We modelled the outward-open conformation by MDFF flexible fitting to the low-resolution outward-open structure of the homologous MjNhaP1 from cryo-EM, followed by the long equilibrium MD simulations. It was shown that the transporter domain moves ~3.5 Å in the direction normal to the membrane to take the outward-open state.

By applying the transition path sampling technique, we sampled unbiased transition paths between the inward- and outward-open states. In analysis of the transition paths, we found hydrophobic gates above and below the ion-binding site, which open and close in response to the domain motions (Figure 1B). From the reaction coordinate analysis, it was shown that open-close motion of the outside gate (Ile163-Tyr255) is a rate-limiting step of the alternating-access conformational change. Based on this result, we weakened the outside gate by mutating the residues to both alanine. It was expected that this mutation lowers the barrier and makes the

ion transport faster. It was confirmed by experiments that the ion-transport speed of the mutant is indeed twice faster than the wild-type transporter.

Figure 1. (A) PaNhaP dimer structure. (B) The outside (purple) and inside (orange) gates found in the transition path simulations.

3. Mechanism of Membrane Remodeling by F-BAR Protein Pacsin1

F-Bin/Amphiphysin/Rvs (F-BAR) domain proteins play essential roles in biological processes that involve membrane remodelling, such as endocytosis and exocytosis. Notably, Pacsin1 from the Pacsin/Syndapin subfamily has the ability to transform the membrane into various morphologies: striated tubes, featureless wide and thin tubes, and pearling vesicles. We clarified the membrane curvature induction and sensing characteristics of Pacsin1 by combining all-atom (AA) and coarse-grained (CG) MD simulations.³⁾ By matching structural fluctuations between AA and CG simulations, a CG protein model called "Gō-MARTINI" was developed and optimized.⁴⁾ The model should prove useful for describing protein dynamics that are involved in membrane remodeling processes.

References

- K. Okazaki, A. Nakamura and R. Iino J. Phys. Chem. B 124, 6475– 6487 (2020).
- K. Okazaki, D. Wöhlert, J. Warnau, H. Jung, Ö. Yildiz, W. Kühlbrandt and G. Hummer, *Nat. Commun.* 10, 1742 (2019).
- M. I. Mahmood, H. Noguchi and K. Okazaki, Sci. Rep. 9, 14557 (2019).
- M. I. Mahmood, A. B. Poma and K. Okazaki, *Front. Mol. Biosci.* 8, 619381 (2021).