Angle-Resolved Photoemission Study on Strongly Correlated Electron Materials

Strongly correlated electron materials has attracted more attentions in the last few decades because of their unusual and fascinating properties such as high-T_c superconductivity, giant magnetoresistance, heavy fermion and so on. Those unique properties can offer a route toward the next-generation devices. We investigate the mechanism of the physical properties as well as the electronic structure of those materials by using angle-resolved photoemission spectroscopy (ARPES). ARPES is a powerful experimental technique, directly measuring the energy (E) and momentum (k) relation, namely the band structure of solids. In the last quarter of a century, the energy resolution and angular resolution of ARPES have improved almost three order of magnitude better, which makes us possible to address the fine structure of the electronic structure near the Fermi level: Superconducting gap, kink structure and so on. The main target materials of our group is high-T_c superconductors, such as cuprates and iron pnictides and use UVSOR-III as a strong light source.

Our group is also developing high-efficiency spin-resolved ARPES system. Spintronics is a rapidly emerging field of science and technology that will most likely have a significant impact on the future of all aspects of electronics as we continue to move into the 21st century. Understanding magnetism of surfaces, interfaces, and nanostructures is greatly important for realizing the spintronics which aims to control and use the function of spin as well as the charge of electrons. Spin-resolved ARPES is one of the most powerful experimental techniques to investigate the magnetic properties of such materials.

Selected Publications
1. Development of Spin-Resolved ARPES with Image-Spin Detection

Spintronics is a rapidly emerging field of science and technology that will most likely have a significant impact on the future of all aspects of electronics as we continue to move into the 21st century. Understanding magnetism of surfaces, interfaces, and nanostructures is greatly important for realizing the spintronics which aims to control and use the function of spin as well as the charge of electrons. Spin- and angle-resolved photoemission spectroscopy (spin-resolved ARPES) is one of the most powerful experimental techniques to investigate the magnetic properties of such materials, where one can know the “complete” information of the electronic states of materials; energy, momentum, and spin direction. Recent development of high energy and angle resolved photoelectron analyzer as well as the contemporary light sources such as third generation synchrotron radiation make it possible for the photoemission spectroscopy to investigate not only band structures but many body interactions of electrons in solids. However, appending the spin resolution to photoemission spectroscopy is quite difficult because of an extremely low efficiency \(10^{-4}\) of Mott-type spin detections. Recently, very-low-energy-electron-diffraction (VLEED-type) spin detector with 100 times higher efficiency than that of conventional Mott-type has been developed and spin-resolved ARPES has been started to be realized. So far, most of the spin-resolved ARPES systems in the world are using the single-channel detector and efficiency is still a problem.

Beamline BL5U at UVSOR has been totally reconstructed by our group, and opened for users as high photon flux and high energy resolution ARPES beamline since 2017. As a new function for this beamline, we have started high-efficient spin-resolved ARPES project with multi-channel detection (we call “image-spin” detection). The goal of this project is to realize the 100 times better efficiency and the 10 times better momentum resolution than the current spin-resolved ARPES system in the world, which can be a breakthrough in this field.

In 2020, we set up the spin detection system and finished the adjustment of the electron lens parameters of the spin detection part (Figure 1). Finally, we successfully obtained spin-resolved signal of Au(111) surface as shown in Figure 2. According to the rough estimation, the efficiency is 100 times better and the momentum resolution is several times better than the current spin-resolved ARPES system in the world.

2. Strong Relationship between ARPES Superconducting Spectral Weight and \(T_c^{1,2}\)

Our recent ARPES study on high-\(T_c\) cuprate superconductors Bi\(_2\)Sr\(_2\)Ca\(_2\)Cu\(_3\)O\(_{6+\delta}\) (Bi2212) and Bi\(_2\)Sr\(_2\)Ca\(_2\)Cu\(_3\)O\(_{10+\delta}\) (Bi2223) indicated strong relationship between the superconducting spectral weight and the critical temperature \(T_c\). To see the detail, we are performing temperature and carrier concentration dependent measurements on several kinds of high-\(T_c\) cuprate superconductors.

References

* Present Address; Hiroshima University
† carrying out graduate research on Cooperative Education Program of IMS with Nagoya University