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Selected Publications

The field of molecular catalysis has been an attractive area 
of research to realize efficient and new transformations in the 
synthesis of functional molecules. The design of ligands and 
chiral molecular catalysts has been recognized as one of the 
most valuable strategies; therefore, a great deal of effort has 
been dedicated to the developments. In general, “metal” has 
been frequently used as the activation center, and confor-
mationally rigid catalyst framework has been preferably com-
ponents for the catalyst design. To develop new type of molecu-
lar catalysis, we have focused on the use of hydrogen and 
halogen atom as activation unit, and have utilized non-covalent 
interactions as organizing forces of catalyst framework in the 
molecular design of catalyst, which had not received much 
attention until recently. We hope that our approach will open 
the new frontier in chiral organic mol ecules from chiral molecu-
lar chemistry to chiral molecular science.

Figure 1.  Hydrogen bonding network in chiral bis-phosphoric acid 
catalyst derived from (R)-3,3’-di(2-hydroxy-3 -arylphenyl)binaphthol. 
Hydrogen bond acts as activation unit for the substrate in asymmetric 
reaction space and controls atropisomeric behavior in naphthyl–
phenyl axis.
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1.  Design of Hydrogen Bond-Based 
Molecular Catalysts

Allylation of imines with allylic metal reagents has been 
one of the most valuable tools to synthesize enantioenriched 
homoallylic amines. Due to the inherent nature of allylic metal 
reagent, however, regioselectivity has been a long-standing 
subject in this area. To develop the synthetic reaction for 
enantioenriched linear homoallylic amines, we discovered 
chirality transferred formal 1,3-rearrangement of ene-aldimines 
in the presence of Brønsted acid, and developed it as synthetic 
method for variety of enantioenriched linear homo allylic 
amines.1) Furthermore, we studied details of reaction mecha-
nism and succeeded catalytic asymmetric version of this 
rearrangement.2) On the basis of our discovery, catalytic asym-
metric version of this reaction was developed.3) To the best 
our knowledge, our discovery is the first example of catalytic 
asymmetric methylene migration.

Figure 2.  Asymmetric counteranion-directed catalysis via OH···O, 
CH···O, CH···π, π···π interactions.

Perfluorinated aryls have emerged as an exquisite class of 
motifs in the design of molecular catalysts, and their electronic 
and steric alterations lead to notable changes in the chemical 
yields and the stereoselectivities. We developed the per-
fluoaryls-incorporated chiral mono-phosphoric acids as chiral 
Brønsted acid catalysts that can deliver high yields and stereo-
selectivities in the reactions of imines with unactivated alkenes. 
We have described the first example of a diastereo- and 
enantioselective [4+2] cycloaddition reaction of N-benzoyl 
imines, as well as the enantioselective three-component imino– 
ene reaction using aldehydes and FmocNH2.4)

We have developed (R)-3,3’-di(2-hydroxy- 3-arylphenyl)
binaphthol derived chiral bis-phosphoric acid which efficiently 
catalyzed enantioselective Diels–Alder reaction of acroleins 
with amidodienes.5,6) We demonstrated that two phosphoric 
acid groups with individually different acidities can play 
distinct roles in catalyst behavior through hydrogen bonding 
interactions. Therefore, we developed a Brønsted acid with 
two different acidic sites, aryl phosphinic acid-phosphoric 
acid.7) Furthermore, molecular design of a chiral Brønsted 
acid with two different acidic sites, chiral carboxylic acid–
cyclic mono-phosphoric acid, was identified as a new and 
effective concept in asymmetric hetero-Diels–Alder reaction 
of 2-azopyridinoester with amidodienes.8)

2.  Design of Halogen Bond-Based 
Molecular Catalysts

Halogen bonds are attractive non-covalent interactions 
between terminal halogen atoms in compounds of the type 
R—X (X = Cl, Br, I) and Lewis bases LBs. It has been known 

that strong halogen bonds are realized when “R” is highly 
electronegative substituents such as perfluorinated alkyl or 
aryl substituents. On the basis of electrophilic feature for 
halogen atom, we have examined it to develop catalysis with 
halogen bond for carbon–carbon bond forming reactions.9,10)

We found that perfluorinated iodoaryls are able to catalyze 
the allylation reaction to N-activated heteroaromatics. On the 
basis of this discovery, a quantitative approach was studied 
using 4-substituted perfluorinated iodobenzene.11) Exami-
nation of the electrostatic potential surfaces showed that 
substituent R groups significantly affected the charge density 
of iodine, fluorine, and carbon on the benzene ring. 19F NMR 
titrations were used to determine the binding constants K for 
chloride, and their catalytic activities were evaluated in the 
allylation reaction. We revealed that the log K and product 
yields were linearly correlated, and that they were dependent 
on the Hammett substituent parameter, σmeta. This linear 
correlation provided a quantitative predictive model for both 
the binding constant and the reaction yield. Concomitantly, 
this efficiently permitted the development of a highly active 
anion-binding catalyst, namely 4-CNC6F4I. The catalytic 
activity of 4-CNC6F4I was established in the allylation and 
crotylation of silatrane reagents to N-activated isoquinolines.

Figure 3.  Molecular electrostatic potential surfaces of 4-RC6F4I (R: CH3, 
H, F, and CF3) at the M06-2X-D3/6-311+G(d,p)-SDD level of theory.
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