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Spintronics is a new indegredient of electronics in which a 
magentic moment of an electron is utilized as an information 
carrier together with its charge. Spin-polized current is one of 
the most important resources in spintronics, because it can 
drive devices such as ferromagnetic memory with spin angular 
momentum. In convetional spintronics, such a spin-polarized 
current is generated by passing a charge current through 
ferromagnetic metals. However, recently, researchers are 
finding other ways of spin-polarized current genertation by 
using topological insulators and non-collinear antiferro-
magnets, which can sometimes be more efficient than those 
with ferromagnets. 

Chiral molecules are attracting recent attention as a new 
source of spin-polarized current. Chirality-Induced Spin Selec-
tivity (CISS) effect generates spin polarization parallel to or 
antiparallel to the electron’s velocity depending on the hand-
edness of the chiral molecule that is being passed through by a 
tunneling electron (Figure 1). Although the mechanism of 
CISS effect is still under debate, it seems to create spin-
polarization higher than those of ferromagnets, which is 
suprisingly large when the small spin–orbit coupling energy of 
organic mol ecules is considered. In order to rationalize such a 
large effect, some microscopic hyptheses are proposed based 
on experi mental results, whose proofs are being waited for. 

Our group is trying to unveil such mechanisms that drive CISS 
effect by using chiral crystalline materials.

 The use of crystalline materials has serveral advantages. 
For example, one can employ theoretical framework with 
well-difined wave number of electrons. Another advantage is 
the size of the chiral material which allows direct attachment 
of detection electrodes in different positions. With these merits 
in mind, we are fabricating spintronic devices suitable for the 
CISS investigations.

Figure 1.  Conceptual schematic for CISS effect. P-helix molecule 
(lower panel) can transmit more electrons with spins antiparallel to the 
velocity (negative helicity electrons) than the other, while M-helix 
molecule (upper panel) favors transmission of electrons with parallel 
spin (positive helicity electrons).
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1.  Spin Current Generation in a Chiral 
Organic Superconductor

Although s- and d-wave superconductors are in a spin 
singlet state at its ground state, a superconductor with broken 
mirror symmetry is expected to show spin triplet state when 
supercurrent is flowing, according to a theory developed by 
Edelstien.1) This means spin polarization can be generated by 
applying supercurrent in a chiral superconductor. The magneti-
zation direction that depends on the lattice symmetry has been 
recently calculated by group theory.2) We have tested this idea 
by employing κ-(BEDT-TTF)2Cu(NCS)2 (hereafter, κ-NCS) 
which is an organic superconductor with chiral and polar 
crystal lattice. The space group of this crystal is P21, and its 
handedness is defined by the relative arrangement between the 
anionic Cu(NCS)2 and cationic BEDT-TTF. This handedness 
can be experimentally determined by X-ray diffraction or 
circular dichroism (CD).

After confirming pure enantiomeric lattice system with 
CD microscope, a thin crystal of κ-NCS has been laminated 
onto a resin substrate with prepatterned gold and nickel 
electrodes. At temperature lower than superconducting Tc, an 
a.c. electrical excitation was applied to induce spin polariza-
tion (Figure 2). The spin polarization accumulated at the 
interface between κ-NCS and the magnetic electrode was 
detected as a built-up voltage that is dependent on the relative 
angle between the accumulated and ferromagnetic spins. We 
have compared the observed voltage with theoretical estima-
tion and found that it exceeds the value predicted by Edelstein 
effect more than 1000 times. This surprising result suggests 
that there is a spin enhancement effect other than Edelstein 
effect, implying existence of an effect analogous to CISS for a 
chiral superconductor.

By measuring the angle dependency of this magneto–
voltaic signal, the direction of accumulated spin could be 
determined. The observed spin polarization direction was 
dependent on the location of the detection electrode inside the 
crystal, and its arrangement was consistent with a magnetic 
monopole structure which has been hypothesized in a chiral 
molecule under non-equilibrium state with CISS effect. More 
specifically, the spin accumulation was forming an antiparallel 
pair on the upper and lower sides of the κ-NCS crystal. With a 
right-handed crystal, the accumulated spins showed outward 
spin pairs. 

To our surprise, this spin accumulation could be observed 
in nonlocal measurements where the excitation and detection 
electrodes are separated by 600 µm. We have also fabricated a 
nonlocal detection device with a crystal possessing two chiral-
ity domains where right- and left-handed crystal structures are 
spatially separated. By exciting this crystal at two different 
positions with opposite handednesses, we have observed a 
switching of spin pairing mode from outward to inward. This 
corresponds to the sign reversal of magnetic monopole in the 
language of multipole expression.3) An interesting point here 
is that the sign of magnetic monopole, which shows time-

reversal-odd (T-odd) characteristics, is connected to the chiral-
ity of underlying crystal lattice so that representing T-odd 
chirality. Although this T-odd chirality is a metastable state 
and disappears at ground state, its relevance to the enantio-
separation experiments in CISS effect is directly implied in 
this experiment. If one accepts the fact that a sign of such a 
metastable magnetic monopole at excitation can represent the 
sign of chirality (electric toroidal monopole) at ground state 
lattice, both the large enhancement of spin polarization and the 
enantio-separation of chiral molecules at non-equilibrium state 
observed in CISS experiments can be naturally understood, 
because such a monopole can interact with magnetic substrate 
in a handedness-specific manner. In this sense, this experiment 
provides the first direct observation of spin pair (or magnetic 
monopole) formation from coherent chiral system and pro-
vides proof of concept for microscopic CISS mechanism. 
Although the Hamiltonians describing the chiral super-
conductor and chiral molecules are quite different, there are 
many common features such as singlet ground state, chiral 
lattice and quantum coherence over the entire body. Therefore, 
we believe the present result provides a lot of stimulating 
insights for microscopic understanding of CISS. Since the 
conversion from T-even spin current to T-odd spin accumu-
lation requires time integration with an existence of spin 
reservoir, the spin carriers in chiral molecules and super-
conductors should be identified in future studies. We also 
expect emergence of superconducting spintronics once a 
sourcing of spin-polarized current in superconductor is estab-
lished by chiral superconductors.
(BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) 

Figure 2.  Device schematic for the detection of spin polarization in a 
chiral superconductor κ-NCS. By applying electrical current, electron 
spins are polarized along the current direction by CISS-like effect 
which can be detected as voltage across the κ-NCS/Ni interface. The 
amplitude of the signal is proportional to the accumulated spins at the 
interface.
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