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Biomolecular machines, such as molecular motors and 
transporters in the cell, are known to change their structure 
when they function. For example, ATP synthase, which syn-
thesizes ATP in mitochondria, is a molecular motor that uses 
chemical energy to rotate unidirectionally. Transporters, which 
transport substrate molecules across the cell membrane, per-
form substrate transport by changing their structure between 
an inwardly and outwardly open structure relative to the 
membrane. Our goal is to elucidate the mechanism of these 
elaborate and dynamic nanomachines created by nature at the 
atomic and molecular level, and to control their functions 
based on our findings.

We would like to understand the mechanism of bio-
molecular machines by “seeing” the motion of biomolecular 
machines at the moment they function at the molecular level, 
on a computer. However, this is not an easy task, because 
biomolecular machines are huge molecules, and their func-
tion ing time scale is slow (for a molecular scale) at milli-
seconds or longer. Conventional atomistic molecular dynamics 
(MD) simulations cannot cover millisecond-long functional 
dynamics, especially for a large system like typical bio-
molecular machines. Therefore, we have developed and 
applied methods such as coarse-grained modeling, enhanced 

sampling and importance sampling to capture the motion at 
the moment of function.

We have been working on biomolecular motors such as 
ATP synthase. ATP synthase is a rotary motor that produces 
most of ATP required in the cell. It is composed of two rotary 
motors: Fo and F1. Fo motor is embedded in the membrane and 
driven by proton gradient, while F1 motor is driven by ATP 
hydrolysis reaction. We clarified how the rotation of F1 motor 
is driven by a key chemical step, Pi release after ATP hydroly-
sis reaction, by accelerating atomistic MD simulations with 
external forces.1)

Transporters are membrane proteins that transport their 
substrates across the membrane. We have studied Na+/H+ 
antiporter, which exchanges sodium ions and protons inside 
and outside the cell. The ion transport process by the Na+/H+ 
antiporter was simulated in atomic detail with transition path 
sampling technique to capture the moment of the ion trans-
ports. The simulations predicted the mutation that can speed up 
the ion transport. The mutation was tested in experiments and 
shown to speed up the ion transport twice faster than the wild 
type. Therefore, we succeeded in controlling the function of the 
transporter based on mechanism obtained from simulations.2)
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1.  Mechanism of Oxalate Transporter

Oxalate is contained in our daily food such as spinach and 
nuts. Excess oxalate forms insoluble salts with calcium ions, 
causing kidney stone disease. Oxalobacter formigenes, an 
oxalate-degrading bacterium that lives in the intestine, absorbs 
oxalate as its sole carbon source and excretes formate, a 
metabolic degradation product. As a result, Oxalobacter 
formigenes contributes to reducing the risk of kidney stone 
disease by lowering the oxalate level. The oxalate transporter 
(OxlT), which exists in the membrane of the bacterium, is 
responsible for oxalate uptake into and formate efflux out of 
the bacterium. The crystal structures of the two different 
conformations taken by OxlT during its transport cycle have 
been determined by our collaborators.3) One structure is in the 
outward-open conformation, while the other structure is in the 
occluded conformation with the bound oxalate. 

The atomistic MD simulation from the occluded confor-
mation of OxlT and analysis of the water molecule density 
revealed the presence of gates above and below the substrate 
binding pocket that control the influx of water and substrate 
molecules.3) The periplasmic gate consists of a hydrogen bond 
between Thr38-Val240 and a hydrophobic structure around it 
(Figure 1A left). The cytoplasmic gate consists of a hydro-
phobic structure composed of Met128, Pro332, and Tyr348 
(Figure 1A right). Furthermore, in microsecond-scale simula-
tions, OxlT undergoes a conformational change from the 
occluded conformation to the outward-open conformation.3) 
The overall conformational change was preceded by a local-
ized change in the flip of the Gln34 side chain at the oxalate 
binding site and the dissociation of the Thr38-Val240 hydro-
gen bond mentioned above, followed a few hundred nano-

seconds later by the opening of the periplasmic gate to the 
open conformation (Figure 2B). Thus, the Gln34 side chain 
and the Thr38-Val240 hydrogen bond are considered to be 
“latches” for the periplasmic gate.

2.  Machine Learning of Reaction 
Coordinates

It is a challenging task to identify reaction coordinates for 
biomolecular systems with many degrees of freedom. Unlike 
order parameters or collective variables, a reaction coordinate 
should describe progress of a reaction between two meta-
stable states. We have developed a machine learning method 
to identify reaction coordinates based on the committor func-
tion. Assuming a linear combination of many collective vari-
ables, reaction coordinates are optimized via likelihood maxi-
mi zation or cross-entropy minimization.4) From coefficients of 
the optimized reaction coordinates, we can also identify rate-
limiting variables, which play an important role in transition 
state area. We have also applied a deep neural network and 
Explainable Artificial Intelligence (XAI) for this problem.5)

3.  Mechanism of Membrane Remodeling 
by F-BAR Protein Pacsin1

F-Bin/Amphiphysin/Rvs (F-BAR) domain proteins play 
essential roles in biological processes that involve membrane 
remodelling, such as endocytosis and exocytosis. Notably, 
Pacsin1 from the Pacsin/Syndapin subfamily has the ability to 
transform the membrane into various morphologies: Striated 
tubes, featureless wide and thin tubes, and pearling vesicles. 
We clarified the membrane curvature induction and sensing 
characteristics of Pacsin1 by combining all-atom (AA) and 
coarse-grained (CG) MD simulations.6) By matching struc-
tural fluctuations between AA and CG simulations, a CG 
protein model called “Gō-MARTINI” was developed and 
optimized.7) This model should prove useful for describing 
protein dynamics that are involved in membrane remodeling 
processes.
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Figure 1.  (A) The determined periplasmic and cytoplasmic gates. (B) 
The conformational transition from the occluded to the outward-open 
state.3)




