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Operando Molecular Science in Liquid–Solid 
Interfaces of Finite Thickness

Division of Advanced Molecular Science
(Department of Materials Molecular Science, Electronic Structure)

We are proud of our internationally compatible studies of 
liquid–solid interfacess; photocatalysts for artificial photo-
synthesis, lubricants for smooth tribology, and ice in antifreeze 
liquids. Characterization with advanced AFM, time-resolved 
ATR-IR spectroscopy, soft X-ray absorption and micro-
electrode-based amperometry are being developed. We look 
forward to collaborating with researchers in academic and 
industrial organizations to unravel the science behind material 
conversion and energy dissipation at liquid–solid interfaces.

A new era of molecular science will be revealed at liquid-
solid interfaces of finite thickness (Figure 1). The molecular 
interface is the site of reaction where molecules of interest 
collide or interact with other molecules. We need to observe 
individual molecules there. On the other hand, the molecular 
interface is connected to the liquid and solid. Materials and 

energy come from/to the two condensed phases, since func-
tional interfaces are always open to the environment. Operando 
characterization is absolutely necessary to study the interface 
in its working state.

Figure 1.  Liquid–Solid Interface of Finite Thickness.
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1.  Ice in Antifreeze Liquids Characterized 
by Atomic Force Microscopy

Ice in nature is surrounded by liquid most of the time, and 
therefore it is key to understand how ice and liquid interact. 
We could now directly observe the precise shape of ice at the 
interface between ice and liquid, by using antifreeze and a 
refrigerated microscope.

Ice provides the most important crystalline molecules in 
our lives. Because of its critical role in science and engi-
neering, a number of experimental studies have been con-
ducted in bulk ice and also on ice–vacuum interfaces. On the 
other hand, molecular-scale knowledge of the ice–water inter-
face is still quite limited. The problem is that an ice–water 
interface fluctuates in space, even when the interface is held 
exactly at the freezing point.

Here we performed atomic force microscopy (AFM) imag-
ing of ice surfaces immersed in antifreeze organic solvents. Ice 
in contact with liquid 1-octanol, for example, is stable at 
temperatures lower than 0 °C and higher than the freezing 
point of 1-octanol (−16 °C). We expect to have a good chance 
of mimicking some features, hopefully important features, of 
the ice–water interface, even though antifreeze solvents are 
not equivalent to water.

We did some preliminary research in 2022 to find a way to 
keep the ice–liquid interface below 0 °C on a Bruker AFM 
(Dimension XR Icon Nano Electrochemical Microscope). The 
best way we found was to cool the entire microscope in a 
soundproof box. A liquid nitrogen vessel was pressurized to 
provide a steady flow of cold nitrogen vapor, and the vapor 
flow was introduced into the box equipped with copper pipe 
works cooled with antifreeze fluid (Figure 2). The temperature 
inside the box was controlled to a desired temperature in a 
range from RT to −10 °C, stable enough to record topographic 
images of ice under antifreeze liquids.1)

Figure 2.  The Bruker microscope at the Instrument Center devised for 
operation at −10 °C.

Ice films were prepared from ultrapure water. After elimi-
nating residual gases by heating to 100 °C, 100 µl of the water 
was dropped onto a cleaved mica substrate on the microscope 
cooled in the nitrogen vapor environment. After the water was 
dropped on mica, the water spread on the surface. This was 

followed by a gradual phase change of the water from liquid to 
solid. After waiting about 30 minutes from the initial drop, the 
ice surface could be scanned using a cantilever in amplitude 
modulation mode. The images obtained showed that the ice 
surface is not atomically flat, but rather has a rough structure 
such as nanometer-scale frost pillars.

The imaging liquid, 1-octanol for the results shown in 
Figure 3, was then applied to the ice film. The thickness of the 
octanol layer was about 1 mm. Panel (a) in Figure 3 shows a 
topographic image obtained at the ice–octanol interface. Two 
flat terraces were separated by a straight step. A cross section 
was constructed along the light blue line and shown in panel 
(b). The height of the step was 0.10 nm, as shown in the cross 
section. The change of the ice surface in octanol liquid from 
the rough surface in N2 vapor would be caused by the partial 
dissolution of the surface in octanol. A limited concentration 
of water dissolves in octanol (the solubility of water in 1-octanol 
is 2 mol l−1 at 25 °C in ref. 2).

Considering the various roles of ice, this study concludes 
that it opens up new possibilities for the study of surface and 
interfacial phenomena associated with ice in liquids. In addi-
tion, the microscope devised in this study is functional for 
imaging ice and also other materials cooled at −10 °C. It is 
available for use at the Instrument Center through the Advanced 
Research Infrastructure for Materials and Nanotechnology 
(ARIM).

Figure 3.  A topographic image of an ice film in 1-octanol liquid at −7 
°C. A cross section determined along the line in panel (a) is shown in 
panel (b).
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