NATIONAL INSTITUTES OF NATURAL SCIENCES IMS [Institute for Molecular Science]

^{大学共同利用機関法人自然科学研究機構} 分子科学研究所

2 0 1 8

分子と対話し、その豊かな知恵を活かす

分子は物質の基本構成単位であり、物質の示す性質や機能を担う根源です。物質の機能を深く知り、これを高度に利用するためには、原子・分子レベルで 物質を理解すること、さらには、分子から構成されるシステムの階層を超えた機能を理解することが不可欠です。分子科学は、分子の持つ特性と機能を物理 及び化学的な手法で体系づけようとする物理学と化学の境界領域の科学で、その対象は個々の分子から宇宙・生命科学まで広い範囲にわたります。分子 科学研究所は設立以来40年以上にわたり、研究の中核拠点として、実験研究と理論研究の両面から我が国の分子科学分野を先導する研究に関与して きました。その背景には、関連研究分野の研究者コミュニティーの支持が不可欠であり、総合的な共同利用研究所としての機能を維持するには、今後も関連 研究者の共同研究の場、研究者の交流や国際学術交流の場を提供すること、さらには、専門的な基盤に立つ高度な研究者の養成のミッションを継続して、 国際的な研究センターとしての機能を維持し続けることが分子科学研究所の使命です。

現在の分子科学研究所は、光分子科学研究領域、物質分子科学研究領域、生命・錯体分子科学研究領域そして、理論・計算分子科学研究領域の4研 究領域と、それらを繋ぐ協奏分子システム研究センターに新たにメゾスコピック計測研究センター(2017年4月発足)を加えて4つの領域と2つの研究センターが 研究基盤を構成しています。さらに極端紫外光研究施設(UVSOR)をはじめとする研究施設を擁し、分子の構造と反応そして機能に関する基礎研究を推 進しています。新たな計測手法の開発と普及は大事なミッションです。昨年度分子制御レーザーセンターを改組し、メゾスコピック計測研究センターを発足させ ました。分子システムの時代を先導する新たな挑戦です。また、岡崎3研究所の力を結集しバイオサイエンスを切り開いてきた岡崎統合バイオサイエンスセン ターは「生命とは」という根源的な問いの解明に向けた新たな展開を目指し、今年度から生命創成探究センターへと進化します。分子科学研究所は、学術 研究の基本を踏まえ、科学分野を先導する研究を推進し、新しい科学領域を拓く挑戦を続けていきます。

分子科学の世界的なCenter of Excellence として、分子科学研究所は世界の人材循環の要として、これからも発展し続けることを目指します。

Molecule is a fundamental unit of materials, origin to form their properties and functions. Molecular functions are in variety of systems, from individual molecules to molecules in the cosmos, in biology systems and in man-made devices. To understand the molecular functions and to highly utilize the systems, Molecular Science now requires bold strides across chemistry, materials and biological sciences.

IMS has served as a center of excellence to lead molecular science activities over four decades long. With the support from the community of related research fields, IMS will continue standing as a comprehensive open-use laboratory, providing a place of joint-research, exchanging global researchers and nurturing young scientists.

IMS has six cores to shape its research activities: Department of Theoretical and Computational Molecular Science, Photo-Molecular Science, Materials Molecular Science, and Life and Coordination-Complex Molecular Science; Research Center of Integrative Molecular Systems is an interdisciplinary playground exploring molecular-hierarchy systems; Center of Mesoscopic Science propels methodological and functional studies of molecular systems. IMS houses open-use research facilities including UVSOR to promote discovery of molecular behaviors. Our challenge continues. Exploratory Research Center on Life and Living Systems, integrating knowledge of three institutes of NIBB, NIPS and IMS, sets forth in April on the quest of the secret keys to life and living.

Keeping its foundation on basic research, IMS will never stop being at the forefront of future Molecular Science.

Institute for Molecular Science Director General KAWAI, Maki

分子科学研究所とは What is IMS?

大型研究施設や測定装置等を国内外の P.37 大学研究者に広く利用いただいています。

We offer open access to researchers from Japan and abroad to both our facilities and equipment.

学生の教育を行い、明日の分子科学を P42 担っていく人材を育成しています。

We commit ourselves to educating students and fostering the next generation of Molecular Scientists.

組織図 Organization

. . .

24

分子科学研究所の研究職員は研究領域あるいは研究施設に所属しています。技術課に属する技術職員は主に研究施設に配置されています。安全衛生管理 や広報・研究者支援・国際化などの活動は、専任職員を配置して、組織化しています。また、同じく大学共同利用機関法人自然科学研究機構に属する基礎生物 学研究所、生理学研究所とともに、岡崎共通研究施設を設置しています。平成30年には自然科学研究機構に生命創成探究センターが発足し、岡崎3研究機関 がその運営に協力しています。岡崎共通研究施設のうち、計算科学研究センターに属する2研究グループ、及び生命創成探究センターに属する4研究グルー プは、分子科学研究所に併任しており、分子科学研究所の一員として等しく大学等の研究者の共同研究・共同利用を推進・支援する体制をとっています。

Each research staff of Institute for Molecular Science (IMS) belongs to a department or to a research facility. Majority of the technical staffs are assigned to Research Facilities. Supporting activities such as safety, public affairs, international affairs, and so forth are organized by dedicated staffs. We also have facilities (including Research Center for Computational Science, RCCS) shared with two other institutes (National Institute for Basic Biology, National Institute for Physiological Sciences) in the same campus. In 2018, Exploratory Research Center on Life and Living Systems has been launched as a new Research Center belonging to National Institutes of Natural Sciences, with which three Okazaki Research Institutes cooperate. Some research groups in these Centers are appointed also as those of IMS, and promote and support collaborations with researchers in universities or other research organizations as well.

沿革 History

	-		
昭和50年4月	分子科学研究所創設(昭和50年4月22日) 機器センター設置(~平成9年3月) 装置開発室設置	Apr. 1975	Institute for Molecular Science founded (April 22, 1975) Instrument Center established (-March 1997) Equipment Development Center established
昭和51年5月	化学試料室設置(~平成9年3月)	May 1976	Chemical Materials Center established (-March 1997)
昭和52年4月	電子計算機センター設置(〜平成12年3月) 極低温センター設置(〜平成9年3月)	Apr. 1977	Computer Center established (-March 2000) Low-Temperature Center established (-March 1997)
昭和56年4月	岡崎国立共同研究機構創設(~平成16年3月)	Apr. 1981	Okazaki National Research Institutes (ONRI) founded (-March 2004)
昭和57年4月	極端紫外光実験施設設置	Apr. 1982	UVSOR Facility established
昭和59年4月	錯体化学実験施設設置(~平成19年3月)	Apr. 1984	Coordination Chemistry Laboratories established (-March 2007)
昭和63年10月	総合研究大学院大学開学 数物科学研究科(~平成16年3月、以降は 物理科学研究科) 構造分子科学専攻、機能分子科学専攻	Oct. 1988	Graduate University of Advanced Studies founded School of Mathematical and Physical Science, Department of Structural Molecular Science/Department of Functional Molecular Science established
平成9年4月	分子制御レーザー開発研究センター設置 (~平成29年3月) 分子物質開発研究センター設置(~平成14年3月)	Apr. 1997	Laser Research Center for Molecular Science established (-March 2017) Research Center for Molecular Materials established (-March 2002)
平成12年4月	共通研究施設設置(岡崎統合バイオサイエンス センター(〜平成30年3月)、計算科学研究センター)	Apr. 2000	Research facilities (Okazaki Institute for Integrative Bioscience (-March 2018) and Research Center for Computational Science) established
平成14年4月	分子スケールナノサイエンスセンター設置 (~平成25年3月)	Apr. 2002	Research Center for Molecular-scale Nanoscience established
平成16年4月	大学共同利用機関法人自然科学研究機構創設	Apr. 2004	National Institutes of Natural Sciences founded as one of the four Inter-University Research Institute Corporations
平成19年4月	4研究領域に研究組織再編、機器センター再設置	Apr. 2007	7 Departments reorganized to 4 Departments Instrument Center re-established
平成25年4月	協奏分子システム研究センター設置	Apr. 2013	Research Center of Integrative Molecular Systems established
平成29年4月	メゾスコピック計測研究センター設置	Apr. 2017	Center for Mesoscopic Sciences established
平成30年4月	生命創成探究センター(自然科学研究機構)設置	Apr. 2018	Exploratory Research Center on Life and Living Systems established

決算額

1 221 654

2,282,332

3,583,986

(単位:千円

80,000

人員·予算 Personnel and Budget

人員	(平成:	30年4	月1日現在	E)				(単	位:人)	平原	戈29:	年度	決算額
区	分	所長	教授	准教授	主任研究員	助教	小計	技術職員	合計		区 ;	分	決算額
所	長	1	-	-	-	—	1	-	1	人	件	費	1,221,6
研究	領域	-	11(10)	10(4)	-	27	48(14)	-	48(14)	運営	营費·設	備費	2,282,33
研究	施設	—	4	4	1	16	25	-	25	施	設	費	80,00
技行	肟 課	_	-	_	-	-	—	29	29	合		計	3,583,98
合	計	1	15(10)	14(4)	1	43	74(14)	29	103(14)				(単位:千

※()内は客員及び兼任の合計で外数。※年俸制職員及び機構内併任は現員数に含む。※休職者は現員数に含む。

Staff (as	of	April,	2018	١

Directo

Profess

Associa

Senior Assista Technic Total

Budget (FY	2017)	(Thousand	yer

or General	1	Personnel	
sors	15 (10)		
ate Professors	14 (4)	Research	
Reseacher	1		
ant Professors	43	Facility	
cal Staff	29	-	
	103 (14)	Total	

n)

dagot (i i zo	(mousand yen)	
Personnel	1,221,654	
Research	2,282,332	
Facility	80,000	
Total	3,583,986	

平成29年度外部資金受入状況*1

		区分	合計		
Ļ	科学研究費助成事業等※2 354,				
2	共同研究(民間企業からの受入を含む) 57,295				
)	受託研究 *3	戦略的創造研究推進事業等(JST) 科学技術振興調整費等(文科省) その他(()内は民間からの受託研究)	515,573 567,360 123,245 (500)		
3)		小計	1,206,178		
	合計		1,618,109		
	※1 左記決算額に含む。 ※2間接経費を含む。				

(単位:千円)

※3受託事業及び間接経費を含む。共通研究施設を除く。

Grants-in-Aid (FY 2017)* (Th	ousand yen)
Grant-in-Aid Scientific Research(KAKENHI, MEXT and JSPS)**	354,636
Joint Research	57,295
CREST, PRESTO, others(JST)***	515,573
Special Coordination Funds for Promoting Science and Technology from MEXT***	567,360
Others***	123,245
Total	1,618,109

** Including indirect expenses Included in the left table *** Including contract-based research and indirect expenses

斉藤 真司(教授) SAITO, Shinii

1988年慶應義塾大学理工学 部卒、1990年京都大学大学院 工学研究科修士課程修了、 1995年博士(理学)(総研大)。 1990年分子科学研究所技官、 1994年名古屋大学理学部助手、 1998年助教授を経て2005年 10月より現職。1999年基礎生 物学研究所、2000年岡崎統 合バイオサイエンスセンター、 2005年東京大学客員助教授、 2006年から2010年3月まで東 京大学、2008年国立情報学 研究所客員教授。 TEL: 0564-55-7300

mail: shinji@ims.ac.jp

1988 B.S. Keio University

1990 M.Eng.KyotoUniversity

- 1995 Ph. D. The Graduate University for Advanced Studies
- 1990 Technical Associate, Institute for Molecular Science
- 1994 Assistant Professor, Nagoya University
- 1998 Associate Professor, Nagoya University
- 2005 Professor, Institute for Molecular Science

2006 Professor, The Graduate University for Advanced Studies

Keywords Spatiotemporal Dynamics. Reactions. Functions

■理論分子科学第一研究部門 Theoretical Molecular Science I 凝縮系における物性や機能を生み出す

ダイナミクスの理論研究

Theoretical Studies on Dynamics in Many-Body Molecular Systems

水の特異的な熱力学的性質やタンパク質の機能など はどのように生まれるのでしょうか?溶液や生体分子な どの系は凝縮系と呼ばれます。このような凝縮系には、フェ ムト秒(10-15秒)という非常に速い時間スケールの分子 振動から、マイクロ秒(10-6秒)からミリ秒(10-3秒)そし てさらに遅い時間スケールの分子の集団的な運動や タンパク質の構造変化が存在します。これらの運動は広 い時間スケールにわたっているだけでなく、運動の空間 スケールもそれぞれ異なっており、しかも非常に複雑に 絡み合っています。さらに、温度や圧力により運動の 様相も大きく変化します。このような複雑な運動により、 分子集合体としての構造は絶えず変化しています。また、 そのような揺らぎの中で、様々な化学反応も進行し、 それらの結果として、物質の様々な物性やタンパク質の 機能につながります。また、これまでは、非常に多くの分 子数の集団的な平均としての物性や反応が調べられて いたにすぎませんでした。しかし、実験の進展により、一つ の分子の構造変化や反応を追跡することも可能になっ てきました。その結果、集団平均された振る舞いや反応 には見られない複雑な様相も明らかになってきました。 私達は統計力学や量子力学に基づく独自の理論計算・ 解析手法を開発するとともに、シミュレーションを駆使し 分子の運動を解析することにより、物質の性質やタンパク 質の機能がどのように生み出されるのか、また、化学反応 がどのように進行するのかなどを理論・計算科学的に研究 しています。

Nonlinear intermolecular interactions cause complicated dynamics in many-body molecular systems, such as liquids and biomolecular systems. The complicated dynamics with a wide range of spatiotemporal scales yield various thermodynamic and dynamic properties of the systems. For example, thermodynamic response functions are described as the ensemble average of fluctuations and the spatiotemporal non-uniform motions known as dynamic heterogeneity which are now considered to be a crucial clue to understand supercooled liquids and glass transition. Furthermore, the heterogeneous dynamics affect reaction dynamics. Experimental and theoretical studies demonstrate that reactions at single-molecule level are described by non-Poisson process and thus the corresponding reaction rates are not constant. In addition to these examples, protein functions are also created as a result of complicated dynamics. Thus, understanding of spatiotemporal heterogeneous dynamics is essential to the elucidation of thermodynamics and dynamic properties, reactions, and functions in the condensed phase. We theoretically and computationally investigate how enzymatic reactions proceed in fluctuating environment, how macroscopic biological functions and thermodynamic anomalies of water are generated from microscopic complicated dynamics.

information on protein folding process calculated from ultra-long simulations.

2D lifetime spectrum

Two-dimensional free energy profile based on dynamical

Dynamical couplings between conformational fluctuations with different time scales revealed by multi-time correlation function.

参考文献

1) T. Yagasaki and S. Saito, "Fluctuations and Relaxation Dynamics of Liquid Water Revealed by Linear and Nonlinear Spectroscopy," Annu. Rev. Phys. Chem. 64, 55-75 (2013) (Invited). 2) K. Kim and S. Saito, "Multiple Length and Time Scales of Dynamic Heterogeneities in Model Glass-Forming Liquids: A Systematic Analysis of Multi-Point and Multi-Time Correlations," J. Chem. Phys. (Special Topic: Glass Transition) 138, 12A506 (13 pages) (2013) (Invited).

3) S. Saito, I. Ohmine, and B. Bagchi, "Frequency dependence of specific heat in supercooled liquid water and emergence of correlated dynamics," J. Chem. Phys. 138, 1094503

(7 pages) (2015).

4) T. Mori and S. Saito, "Dynamic Heterogeneity in the Folding/Unfolding Transitions of FiP35," J. Chem. Phys. 142, 135101 (7 pages) (2015).

5) J. Ono, S. Takada, and S. Saito, "Couplings between Hierarchical Conformational Dynamics from Multi-Time Correlation Functions and Two-Dimensional Lifetime Spectra: Application to Adenylate Kinase," J. Chem. Phys. (Special Topic: Multidimensional Spectroscopy) 142, 212404 (13 pages) (2015)(Invited).

石﨑 章仁(教授) ISHIZAKI, Akihito

2008年京都大学大学院理学 研究科博士課程修了、博士(理 学)。2008年カリフォルニア大 学バークレー校化学部化学科 にて日本学術振興会海外特 別研究員、2010年ローレンス・ バークレー国立研究所物理 生物科学部門博士研究員、 2012年3月分子科学研究所特 任准教授を経て、2016年4月 より現職。2016年名古屋大学 大学院理学研究科客員教授 兼任。

TEL: 0564-55-7310

FAX: 0564-53-4660

mail: ishizaki@ims.ac.jp

2008 D.Sc. Kyoto University

- 2006 JSPS Research Fellow, Kyoto University
- 2008 JSPS Postdoctoral Fellow for Research Abroad, University of California, Berkeley
- 2010 Postdoctoral Fellow, Lawrence Berkeley National Laboratory
- 2012 Research Associate Professor, Institute for Molecular Science
- 2013 Fellow 2012–2013, Wissenschaftskolleg zu Berlin
- 2016 Professor, Institute for Molecular Science

Keywords

Quantum Dynamics, Energy/Charge Transfer, Photosynthetic Light Harvesting

凝縮相分子系における量子動力学現象の理論

Theoretical Studies of Quantum Dynamics in Condensed Phase Molecular Systems

我々が量子力学現象を議論するとき、実のところ、 いかなる量子系も純粋な孤立系とは見なすことはでき ません。常に何らかの外界と接触することで、ときに 量子性が破壊され、ときには量子性が頑健に保持される 一複雑な分子系においては量子性の維持と崩壊のバ ランスが化学ダイナミクスの様態に大きな影響を及ぼ し得るため「多自由度ゆえに生じる揺らぎや摩擦に曝 されながら量子効果はどのような影響を受けるのか」 を理解することは、重要な課題となります。

そのような量子散逸現象の顕著な例として、私たちが 最近10年ほど取り組んでいる光合成初期過程における 電子エネルギー移動や電荷分離過程があります。光合 成は光という物理エネルギーを細胞が利用可能な化 学エネルギーに変換する分子過程であり、糖の生成を 通して地球上の全ての生命活動を維持しています。 近年は再生可能エネルギーの観点からも注目され、 エネルギー資源問題に応える緊急課題として光合成 機構の仕組みを取り入れた分子素子の研究開発が進 められています。太陽光の強度が弱い場合には、捕獲さ れた光エネルギーは色素分子の電子励起エネル ギーとなりほぼ100%の量子収率で反応中心タンパク 質へ輸送され一連の電子移動反応を駆動しますが、広大 な物理空間にありながら、また絶え間ない分子運動 と揺らぎの中にありながら電子励起エネルギーはどの ようにして反応中心へ迷子にもならず一意的に辿り 着きエネルギー変換に用いられるのでしょうか?

私たちは、超高速レーザー分光などの実験研究者と密 に連携しながら、量子散逸系動力学理論・非線形光学応 答理論を駆使することで光合成初期過程におけるエネ ルギー輸送やエネルギー変換過程などの凝縮相分子 系における量子動力学現象の解明に取り組んでいます。

参考文献

A. Ishizaki & G. R. Fleming, "Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer," *J. Chem. Phys.* **130**, 234111 (2009); (10 pages).
 A. Ishizaki & G. R. Fleming, "Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature," *Proc. Natl. Acad. Sci. USA* **106**, 17255-17260 (2009).
 A. Ishizaki & G. R Fleming, "Quantum coherence in photosynthetic light harvesting," *Annu. Rev. Condens. Matter Phys.* **3**, 333-361 (2012).

G. S. Schlau-Cohen, A. Ishizaki, Tessa R. Calhoun, Naomi S. Ginsberg, Matteo Ballottari, Roberto Bassi & Graham R. Fleming, "Elucidations of timescales and origins of quantum electronic coherence in LHCII," *Nature Chemistry* 4, 389-395 (2012)
 G. D. Scholes et al. "Using coherence to enhance function in chemical and biophysical systems," *Nature* 543, 647-656 (2017).

Essentially, any quantum systems can never be regarded as "isolated systems." Quantum systems are always in contact with "the outside world" and hence, their quantum natures are sometimes sustained and sometimes destroyed. In condensed phase molecular systems, especially, quantum systems are affected by the huge amount of dynamic degrees of freedom such as solvent molecules, amino acid residues in proteins, and so on. Balance between robustness and fragility of the quantum natures may dramatically alter behaviors of chemical dynamics.

One of the notable examples of such quantum dynamical phenomena is the energy transport and energy conversion processes in photosynthetic systems. Photosynthesis provides the energy source for essentially all living things on Earth, and its functionality has been one of the most fascinating mysteries of life. The conversion starts with the absorption of a photon of sunlight by one of the light-harvesting pigments, followed by transfer of electronic excitation energy to the reaction center, where charge separation is initiated. At low light intensities, surprisingly, the quantum efficiency of the transfer is near unity. A longstanding question in photosynthesis has been the following: How does light harvesting deliver such high efficiency in the presence of disordered and fluctuating dissipative environments? Why does not energy get lost? At high light intensities, on the other hand, the reaction center is protected by regulation mechanisms that lead to guenching of excess excitation energy in light harvesting proteins. The precise mechanisms of these initial steps of photosynthesis are not yet fully elucidated from the standpoint of molecular science.

Our group is investigating quantum dynamical phenomena in condensed phase molecular systems such as energy transport and conversion processes in photosynthetic systems through the use of quantum dissipative theories and nonlinear optical response theories in close collaboration with experimental researchers of optical spectroscopy.

The crystal structure of LHCII isolated from spinach, which is the most abundant photosynthetic antenna complex in plants containing over 50% of the world's chlorophyll molecules.

江原 正博(教授) EHARA, Masahiro

1988年京都大学卒業、1993 年同大学院博士課程修了、 博士(工学)。基礎化学研究所 博士研究員、ハイデルベルグ 大学博士研究員、1995年京都 大学助手、2002年同助教授を 経て、2008年6月より現職。 TEL: 0564-55-7461 FAX: 0564-55-7025 mail: ehara@ims.ac.jp

1988 B.S. at Kyoto Univ. Faculty of Engineering

- 1993 Ph.D. at Kyoto Univ. Graduate School of Engineering
- 1994 Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellow

Visiting Researcher at Heidelberg Univ.

1995 Assitant Professor at Kyoto Univ. Graduate School of Engineering

2002 Associate Professor at Kyoto Univ. Graduate School of Engineering

2008 Professor at Insititute for Molecular Science

2012 Professor at Element Strategy for Catalysis and Battery (ESICB), Kyoto Univ. (additional post)

$\langle Keywords \rangle$

Quantum Chemistry, Photophysical Chemistry, Heterogeneous Catalysis

高度な電子状態理論に基づく複雑系の基礎化学 Fundamental Chemistry of Complex Systems using Advanced Electronic Structure Theories

自然界の様々な化学事象は分子の電子状態に基づ いて発現しています。私たちは、複雑な化学事象の原 理を明らかにし、化学概念を構築することを目的とし て、高度な電子状態理論を開発し、光化学や触媒化学 の基礎研究を行っています。現在の主な研究テーマは 以下のとおりです。

(1) 複雑系の高精度電子状態理論の開発

分子の電子状態や化学反応には複雑な電子構造をもつ 状態が存在します。これらの複雑系の電子状態に適用 できる高度な量子状態理論や計算アルゴリズムを開発 し、基礎化学から応用化学に亘る広い分野の化学事象 を研究しています。例えば、励起状態や化学反応の溶媒 効果を記述するPCM SAC-CI法、準安定な共鳴状態 を計算するCAP/SAC-CI法やACCC SAC-CI法、複 雑な電子状態を精密に記述するSAC-CI general-R 法、分子の電子状態や化学反応の圧力効果を研究する XP-PCM法を開発し、応用研究を実施しています。 (2) 不均一系触媒の理論研究

金属酸化物や凝縮相高分子に担持された金属ナノ 粒子は、高効率な触媒反応を実現します。私たちは、 これらの複雑・複合系である金属ナノ粒子の触媒活性 を量子化学計算を用いて、担体効果や合金効果に注目 して研究しています。最近の研究では、凝縮相金・パラ ジウム合金微粒子の低温C-CI活性化、金クラスターの 様々な触媒反応、アルミナ担持銀クラスターの水素 活性化などのメカニズムを理論的に明らかにしました。 実験と協働し、触媒・電池の元素戦略拠点のプロジェクト において、高度な触媒活性を持つ不均一系触媒の研究 開発に挑戦しています。

参考文献

1) M. Ehara, T. Sommerfeld, "CAP/SAC-CI Method for Calculating Resonance States of Metastable Anions," *Chem. Phys. Lett.* **537**, 107-112 (2012).

2) R. Cammi, R. Fukuda, M. Ehara, H. Nakatsuji, "SAC-CI Method in the Polarizable Continuum Model-Theory for Solvent Effect on Electronic Excitation of Molecules in Solution," *J. Chem. Phys.* **133**, 024104-1-24 (2010).

3) R.N. Dhital, C. Kamonsatikul, E. Somsook, K. Bobuatong, M. Ehara, S. Karanjit, H. Sakurai, "Low-Temperature Carbon-Chlorine Bond Activation by Bimetallic Gold/Palladium Alloy Nanoclusters: An Application to Ullmann Coupling," *J. Am. Chem. Soc.* **134**, 20250-20253 (2012).

4) P. Hirunsit, K. Shimizu, R. Fukuda, S. Namuangruk, Y. Morikawa, M. Ehara, "Cooperative H₂ Activation at Ag Cluster/θ-Al₂O₃(110) Dual Perimeter Sites: A Density Functional Theory Study," *J. Phys. Chem. C.* 118, 7996-8006 (2014).

Various chemical phenomena in nature appear originating in molecular electronic states. We develop the advanced electronic structure theories to investigate the photochemistry and catalysis. Our current research subjects are as follows.

(1) Advanced electronic structure theories for large complex systems

Complex electronic structure exists in molecular electronic states and chemical reactions. We develop the advanced electronic structure theories and their efficient computational algorithm applicable to large complex systems and investigate various phenomena in fundamental and applied chemistry; for example, PCM SAC-CI for the solvent effects on excited states and chemical reactions, CAP/SAC-CI and ACCC SAC-CI for metastable resonance states, SAC-CI general-R for complex electronic states, and XP-PCM for high pressure effects on electronic states and reactions.

(2) Heterogeneous catalysts

Metal nanoclusters (NC) supported by metal oxides or colloidal phase polymers achieve highly efficient catalytic reactions. We study the catalytic activity of these complex systems in view of metal support interaction and alloy effects using quantum chemical calculations. For example, we elucidated the mechanism of the low-temperature C-CI activation on Au-Pd NC:PVP, various catalytic reactions on Au NC:PVP, and the H₂ activation of Ag NC/alumina. We challenge the development of advanced heterogeneous catalysts in the project of Elements Strategy Initiative for Catalysts and Batteries (ESICB) collaborating with experimental groups.

Fig. 1 Electronic resonance states of DNA/RNA nucleobases

Fig. 2 Solvation dynamics of Au/Pd alloy nanocluster

奥村 久士(准教授) OKUMURA, Hisashi

1998年慶應義塾大学理工学 部卒業、2002年同大学大学院 理工学研究科博士課程修了、 博士(理学)。東京大学工学系 研究科日本学術振興会特別 研究員(PD)、分子科学研究 所助手、名古屋大学大学院理 学研究科COE特任講師、ラト ガース大学研究助教授を経て 2009年5月より現職。

TEL: 0564-55-7277

FAX: 0564-55-7025

mail: hokumura@ims.ac.jp

1998 B.S. Keio University

2002 Ph.D. Keio University

Postdoctoral Fellow, The University of Tokyo

Research Associate, Institute for Molecular Science

2004 Research Associate, The Graduate University for Advanced Study

2006 Research Lecturer, Nagoya University

2008 Research Assistant, Rutgers University

2009 Assistant Research Professor, Rutgers University

> Associate Professor, Institute for Molecular Science

Associate Professor, The Graduate University for Advanced Studies

2018 Associate Professor, Exploratory Research Center on Life and Living Systems

Keywords

Molecular Dynamics Simulation, Protein,

Amyloid

■計算分子科学研究部門 Computational Molecular Science 生体分子動力学シミュレーション: タンパク質の折りたたみ、変性、凝集、アミロイド線維

Biomolecular Dynamics Simulation: Protein Folding, Denaturation, Aggregation, and Amyloid Fibril

タンパク質は、多数のアミノ酸がペプチド結合により つながったもので、そのアミノ酸の並び方(一次元配列)) はタンパク質の立体構造を決める重要な要素となります。 アミノ酸の一次元配列情報をもとにタンパク質の立体 構造を予測する問題をタンパク質の折りたたみ問題と いいます。この問題が難しい理由は、通常のシミュレー ション手法では多くのタンパク質構造を探索するため に非常に長い時間シミュレーションを行わなければな らないからです。

この問題を解決するためこれまでに有力な手法が いくつか提案されてきました。そのうちの1つである レプリカ交換法では系のコピー(レプリカ)を複数用意 し、シミュレーションの途中で2つのレプリカ間で温度 を交換し、各レプリカの温度を上下させることで効率的 な構造空間のサンプリングを実現します。最近、我々は より強力なレプリカ置換法を考案しました。この方法を 使ってCペプチドの折りたたみシミュレーションを行 い、このペプチドがαヘリックス構造を形成し折りたた む過程を図1のように明らかにしました。

さらに医療への応用にも関心を持っています。タン パク質が間違って折りたたまれることによってひき起こ されるフォールディング病という病気があります。アル ツハイマー病やハンチントン病がその例です。これらの 病気はタンパク質が間違って折りたたまれ凝集し、アミ ロイドという針状の物質を作ってしまうことが原因です が、アミロイドが形成されるしくみはまだよくわかって いません。レプリカ置換分子動力学法を使ってアミロ イドの形成メカニズムの解明に取り組んでいます。また アミロイド線維は超音波を使って破壊することができ るのですが、その過程を非平衡分子動力学シミュレー ションにより初めて解明しました(図2)。

Fig. 1 (a) Free-energy landscape and (b) typical structures at local-minimum free-energy states of C-peptide.

Biomolecules such as proteins and peptides have complicated free-energy landscape with many local minima. The conventional canonical-ensemble molecular dynamics (MD) simulations tend to get trapped in a few of the local-minimum states. To overcome these difficulties, we have proposed new generalized-ensemble algorithms, such as replica-permutation method. We apply these methods to proteins and peptides and try to predict the native structures of proteins as in Figure 1.

We are also interested in amyloid fibrils, which are insoluble aggregates of misfolded fibrous proteins and associated with more than 20 human neurodegenerative diseases (Figure 2). For example, Alzheimer's disease is related to amyloid- β (A β) peptides. To overcome these diseases, it is essential to understand amyloid genesis and disruption. We perform such MD simulations of amyloid fibrils.

参考文献

1) H. Okumura and S. G. Itoh, "Structural and fluctuational difference between two ends of A β amyloid fibril: MD simulation predicts only one end has open conformations", *Sci. Rep.* **6**, 38422 (9 pages) (2016).

2) S. G. Itoh and H. Okumura, "Oligomer formation of amyloid-β(29-42) from its monomers using the Hamiltonian replica-permutation molecular dynamics simulation", *J. Phys. Chem. B* **120**, 6555-6561 (2016).

 H. Okumura and S. G. Itoh, "Amyloid fibril disruption by ultrasonic cavitation: Nonequilibrium molecular dynamics simulations," *J. Am. Chem. Soc.* **136**, 10549-10552 (2014).

4) S. G. Itoh and H. Okumura: "Replica-permutation method with the Suwa-Todo algorithm beyond the replica-exchange method", *J. Chem. Theory Comput.* **9**, 570-581 (2013).

Fig.2 Disruption process of an amyloid fibril of $A\beta$ peptides by supersonic wave. The amyloid fibril is disrupted when a bubble collapses.

藤田 貴敏(特任准教授) FUJITA, Takatoshi

2006年神戸大学発達科学部 卒業、2011年同大学大学院 人間発達環境学研究科博士 課程修了、博士(理学)。日本 学術振興会特別研究員、ハー バード大学博士研究員、京都大 学博士研究員を経て、2016年 4月より現職。 TEL: 0564-55-7260

FAX: 0564-53-4660

mail: tfujita@ims.ac.jp

2006 B.H.D. Faculty of Human Development, Kobe University

- 2008 M.S. Graduate School of Cultural Studies and Human Science,Kobe University
- 2011 Ph.D. Graduate School of Human Development and Environment, Kobe University
- 2010 JSPS Research Fellow (DC2)
- 2011 JSPS Research Fellow (PD)
- 2012 Postdoctoral Fellow, Department of Chemistry and Chemical Biology, Harvard University

2015 Postdoctoral Fellow, Department of Chemistry, Graduate School of Science, Kyoto University

2016 Research Associate Professor, Institute for Molecular Science

Keywords>

Exciton,

Energy and Charge Transfer, Organic Semiconductors 分子集合体の光電子物性とダイナミクス Theoretical Studies on Molecular Aggregates

近年のエネルギー問題から、太陽光エネルギーを いかに効率よく収集・利用するかは非常に重要な問題 です。電気を流す有機分子一有機半導体の発見以来、 様々な分子を使って光エネルギーを収集・制御する試 みが行われてきました。代表的なものが有機薄膜太陽 電池で、シリコン太陽電池と比べてフレキシブル・低コ ストといった利点があります。他方、超分子化学の発展 や自己組織化の利用により、分子からボトムアップで ナノ構造体を作る研究も盛んに行われています。具体 的には構造制御を利用した物性・機能のコントロール や、独特な物性を持つソフトマターのデザインが進め られています。

多数の有機分子が集積した分子集合体の物性は、 孤立分子の物性と比べてどう違っているでしょうか? 凝集した多数の分子は分子間相互作用のため協同的 に振る舞うことができ、光吸収に伴って集団的な電子 励起状態を形成できるようになります。電子励起状態 をある種の準粒子―電子と正孔が対になった励起子 と考えると、相互作用によって励起子波動関数が分子 間に非局在化するともいえます。分子集合体の光物性 の特徴としては、J会合体で見られるような吸収スペ クトルのレッドシフトや、ある分子から別の分子へ電子 励起状態が移動する蛍光共鳴エネルギー移動などが あります。また、分子間距離が近くなって各分子の分 子軌道が重なる場合には、電子や正孔が分子間を移 動する電荷移動や、励起子が電子と正孔に分かれる電 荷分離が起きることもあります。このような分子集積 の結果として現れる光電子物性が我々の研究ター ゲットです。

当研究室では、分子結晶からソフトマターを含めた 様々な分子集合体を研究の対象にして理論的・計算 科学的研究を行っています。具体的には分子が多数集 積した系の光電子物性やエネルギー移動・電荷移動 のダイナミクス、さらにはエネルギー変換機構や構造-物性相関を理解することを目標にしています。

参考文献

 T. Fujita, J. Huh, S. K. Saikin, J. C. Brookes, A. Aspuru-Guzik, "Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria," *Photosynth. Res.* **120**, 273-289 (2014).

2) T. Fujita, S. Atahan-Evrenk, N. P. D. Sawaya, A. Aspuru-Guzik, "Coherent Dynamics of Mixed Frenkel and Charge Transfer Excitons in Dinaphtho[2,3-b:2'3'-f] thieno[3,2-b]-thiophene Thin Films: The Importance of Hole Delocalization," *J. Phys. Chem. Lett.* **7**, 1374-1380 (2016).

Organic molecules can assemble into an ordered structure by non-covalent interactions, forming various types of aggregates. Molecular aggregates exhibit characteristic optical and electronic properties that are not observed in isolated molecules; those optoelectronic properties are desirable for producing flexible and low-cost devices. For example, a large number of molecules can behave cooperatively due to their intermolecular interactions, and they can form a collective electronic excited state by light absorption. Another characteristic photophysical process of molecular aggregates is fluorescence resonant energy transfer, where an electronic excited state is transferred from one molecule to another. In addition, when the intermolecular distance is so close that the intermolecular orbital overlaps become significant, charge separation can take place. Our research targets are optoelectronic properties and photophysical processes that emerge as a result of the molecular aggregation.

We study optoelectronic properties and quantum dynamics of molecular aggregates. More specifically, we focus on energy and charge transfer dynamics, energy conversions, and structure-property relationship. We currently investigate electronic structures and exciton dynamics in organic optoelectronic materials, such as an organic/organic interface. We also develop an ab initio theory suitable to treat electronically excited states of large systems with reasonable accuracy, on the basis of a fragment-based theory and a many-body perturbation theory.

Fig1:(a) Schematic picture of excitation energy transfer in the chlorosome light-harvesting antenna system. (b) Time-dependent polarization anisotropy.

Fig2:(a) Schematic picture of the exciton in a thin film of p-type organic semiconductor molecules (b) Delocalization length of electron (red) and hole (blue) wavefunctions and electron-hole separation (green).

岡崎 圭一(特任准教授) OKAZAKI, Kei-ichi

2004年京都大学理学部卒、 2009年神戸大学大学院自然 科学研究科博士課程修了、理 学博士。日本学術振興会特別 研究員(DC2、PD)、同海外特別 研究員、米国国立衛生研究所 博士研究員、マックスプランク 生物物理学研究所博士研究員 を経て、2016年6月より現職。

2	2004	B.S. Kyoto University
2	2006	M.S. Kobe University
2	2009	Ph.D. Kobe University
2	2007	JSPS Research
		Fellow (DC2)
2	2009	JSPS Postdoctoral
		Fellow (PD)
		Postdoctoral Fellow,
		Waseda University
2	2010	Part-time Lecturer,
		Waseda University

- 2011 Postdoctoral Fellow, National Institutes of Health, USA
- 2012 JSPS Postdoctoral Fellow for Research Abroad
- 2013 Postdoctoral Fellow, Max Planck Institute of Biophysics, Germany

2016 Research Associate Professor, Institute for Molecular Science

$\langle Keywords \rangle$

Theoretical Biophysics, Molecular Motors, Molecular Simulations

■理論·計算分子科学研究部門 Theoretical and Computational Molecular Science

生体分子マシンの機能ダイナミクスを 理論的手法で解明し、デザインする

Functional Dynamics of Biomolecular Machines Revealed by Theoretical Methods

機能ダイナミクスは、生体分子マシンが働く仕組み を理解する上で必要不可欠です。例えば、モーター タンパク質は、ATP加水分解エネルギーを用いて、 レールの上を歩いたり、固定子に対して回転したりします。 膜輸送タンパク質は、生体膜に対して内側に開いた構 造と外側に開いた構造との間で構造変化することで、 基質分子を膜の内外へ輸送しています。このように自 然が作り上げた精巧かつダイナミックなナノマシンの 働く仕組みを原子・分子レベルで解明し、そのデザイン 原理を学ぶことが目標です。

生体分子マシンの機能ダイナミクスは、幅広い階層 の動き・反応が複雑にからみあっています。このような ダイナミクスを理解するには、多階層な(マルチスケー ルな)モデルを駆使する必要があります。従来の全原 子分子動力学シミュレーションのみでは、とても太刀 打ちできません。なぜなら、生体分子マシンは巨大複 合体で、溶媒分子も含めると全原子数は数十万以上に なる上に、典型的な機能時間スケールはミリ秒以上で あるからです(1兆回時間ステップの繰り返し計算に相当)。 私たちは、全原子・粗視化モデルを用いた分子シミュ レーションや、速度論モデルなどを駆使してこの問題 に取り組んでいます。

私たちはこれまで、細胞内の主なエネルギー供給源 であるATP合成酵素に取り組んできました¹⁻³⁾。その 酵素部分であるF₁-ATPaseは、ATP加水分解エネル ギーを使って中心軸を回転させる回転分子モーター です。その回転力を生み出す重要なステップである、 ATP加水分解後のリン酸解離について、全原子分子動 力学シミュレーションに基づいて解離の時定数を見積 もり実験値と比較することで、そのタイミングと経路 を明らかにしました¹⁾。また、共通の回転軸を介してF₁ とF₀の2つのモーターが協同して働く仕組みを、ねじ れ弾性や摩擦といった力学的特性に基づいたマス ター方程式を用いて明らかにしました²⁾。このように、 生体分子マシンは様々な階層で面白い問題が満載です³。

参考文献

 K. Okazaki & G. Hummer, "Phosphate release coupled to rotary motion of F₁-ATPase." *Proc. Natl. Acad. Sci. U S A* **110**:16468-16473 (2013).

2) K. Okazaki & G. Hummer, "Elasticity, friction, and pathway of gamma-subunit rotation in F_0F_1 -ATP synthase." *Proc. Natl. Acad. Sci. U S A* **112**:10720-10725 (2015).

3) 岡崎圭一 "F₁-ATPaseの機能的運動のマルチスケールな解析: リン酸解離からγサブユニット回転の弾性・摩擦まで." 生物物理 55:208-209 (2015). Functional dynamics plays an important role when biomolecular machines fulfill their functions. For example, motor proteins walk on the rail or rotate relative to the stator by using ATP hydrolysis energy. Transporter proteins transport their substrates across the membrane by changing their conformation between inward-open and outward-open conformations. We aim to understand design principles of these precise, yet dynamic nano-machines developed by nature.

Functional dynamics of biomolecular machines involve wide spectrum of intricate motions. In order to understand such dynamics, we need a multiscale approach to cover full range of these motions. Conventional atomistic molecular dynamics simulations alone cannot cover millisecond-long functional dynamics, especially for a large system like biomolecular machines. Thus, we use both atomistic and coarse-grained molecular simulations, as well as kinetic model, to tackle this problem.

We have been particularly focusing on ATP synthase that produces most of ATP required for living activities. The ATP synthase is composed of two rotary motors, F_o and F_1 . The F_1 motor (F_1 -ATPase) use ATP hydrolysis energy to rotate the central stalk in one direction. By using atomistic molecular dynamics simulations, we clarified timing and pathway of P_1 release that produces torque¹). We also clarified the coupling mechanism of two rotary motors F_o and F_1 , based on a master-equation model²).

All-atom molecular dynamics simulation

Molecular dynamics simulations of F_1 -ATPase. Torque on central stalk or biasing potential for P_1 are applied to speed up functional dynamics.

大森 賢治(教授) OHMORI, Kenji

1987年東京大学卒業、1992年 同大学院工学系研究科博士 課程修了、工学博士。東北大学 助手・助教授を経て2003年9月 より現職。2001年~2016年 JST CREST 事業併任、2004年 ~2005年東北大学客員教授、 2007年~2008年東京工業大 学客旨教授、2009年~2011年 東京大学客員教授、2012年~ ハイデルベルグ大学客員教授、 2014年~2016年ストラスブ-ル大学客員教授。2007年日本 学士院学術奨励賞、2009年ア メリカ物理学会フェロー表彰、 2012年ドイツフンボルト賞、 2017年宅間宏記念学術賞、 2018年文部科学大臣表彰

TEL: 0564-55-7361 FAX: 0564-54-2254 mail: ohmori@ims.ac.jp Graduated from Faculty 1987 of Engineering, The University of Tokyo Ph. D, The University of 1992 Research Associate, Tohoku University Associate Professor, 2001 Tohoku University Professor, Institute for Molecular Science 2003 Professor, The Graduate University for Advanced Studies 2004- Visiting Professor, 2005 Tohoku University 2007- Visiting Professor, Tokyo 2008 Institute of Technology 2009- Visiting Professor, The 2011 University of Toleon 2011 University of Tokyo 2007- Director, Laser Research 2010 Center for Molecular Science, IMS 2014- Visiting Professor, 2016 University of Strasbourg 2010- Chairman, Department present of Photo-Molecular Science, IMS 2012- Humboldt Awardee, present University of Heidelberg Keywords Attosecond. Quantum Simulation, BEC

アト秒量子エンジニアリング Exploring Quantum-Classical Boundary

「物質は見方によって粒子になったり波になったりする。」 量子の世界の本質はここにあります。量子力学が生まれ て100年、コンピュータやCDプレーヤー等、量子力学の 応用製品はなくてはならない存在になりました。しかし、 人類はまだ量子の世界をよく理解しておらず、その応用 の余地も膨大に残されています。私たちは、量子の世界 をより良く理解するために、物質の波を光で完全に制御 するというテーマに挑戦しています。

私たちは、電子や原子の波にアト秒(アト=10-18)レベ ルで制御されたレーザー光の情報を転写することで、そ れらをピコメートル(ピコ=10-12)・フェムト秒(フェムト= 10-15)レベルの時空間精度で加工し可視化することに成 功しました1),2)。さらに、この技術を用いて、世界最速レベ ルのスパコンの1000倍以上の速さで計算する分子コン ピュータを開発しました3,4)。つい最近では、世界最速 スパコンでも計算不可能な多数の電子の集団運動をア ト秒レベルでシミュレートできる全く新しい超高速量子 シミュレータの開発に成功しています。これらの成果 は、朝日新聞や中日新聞を始めとする多数の新聞各紙 で取り上げられた他、英米の科学雑誌Nature、 Science、Nature Physics、Nature Photonics、米国物 理学会Physics、英国物理学会PhysicsWorld、ドイツ物 理学会Pro-Physik、あるいはScienceDaily、PhysOrg、 PopSciなど各国のメディアで大きく報道される等、世界 的な注目を集めています。

今後、私たちの研究の途上で、「物質の波と粒子の性 質がどんなふうに共存しているのか?」そんな100年の 謎を解くためのヒントが見つかるかもしれません。

参考文献

 "Visualizing picometric quantum ripples of ultrafast wave-packet interference," H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, *Science* **311**, 1589-1592 (2006).
 "Actively tailored spatiotemporal images of quantum interference on the picometer and femtosecond scales," H. Katsuki, H. Chiba, C. Meier, B. Girard, and K. Ohmori, *Phys. Rev. Lett.* **102**, 103602 (2009).

 "Ultrafast Fourier transform with a femtosecond laser driven molecule," K. Hosaka, H. Shimada, H. Chiba, H. Katsuki, Y. Teranishi, Y. Ohtsuki, and K. Ohmori, *Phys.* v. Lett. 104, 180501 (2010).

Selected for "Editors' Suggestions" in PRL.

Covered by "Viewpoints" in Physics; Physics 3, 38 (2010). Covered by "Research Highlights" in Nature; Nature 465, 138-139 (2010).

4) "Strong-laser-induced quantum interference," H. Goto, H. Katsuki, H. Ibrahim, H. Chiba, and K. Ohmori, *Nature* wysics 7, 383-385 (2011). (DOI:10.1038/NPHYS1960)

Highlighted by "News and Views" in Nature Physics. 7, 373-374 (2011).

It is observed in a double-slit experiment by Tonomura and coworkers that single electrons recorded as dots on a detector screen build up to show an interference pattern, which is delocalized over the screen.¹⁾ This observation indicates that a delocalized wave function of an isolated electron interacts with the screen, which is a bulk solid composed of many nuclei and electrons interacting with each other, and becomes localized in space. This change, referred to as "collapse" in quantum mechanics, is often accepted as a discontinuous event, but a basic question arises: When and how the delocalized wave function becomes localized? Our dream is uncovering this mystery by observing the spatiotemporal evolution of a wave function delocalized over many particles interacting with each other. Having this dream in mind, we have developed coherent control with precisions on the picometer spatial and attosecond temporal scales. Now we apply this ultrafast and ultrahigh-precision coherent control to delocalized wave functions of macroscopic many-particle systems such as an ensemble of ultracold Rydberg atoms and a bulk solid, envisaging the quantum-classical boundary connected smoothly.

Fig.1. Spatiotemporal images of a wave function, which has been designed and visualized in the iodine molecule with precisions on the picometer spatial and attosecond temporal scales. Adopted from ref. 2).

 "All-optical control and visualization of ultrafast two-dimensional atomic motions in a single crystal of bismuth," H. Katsuki, J.C. Delagnes, K. Hosaka, K. Ishioka, H. Chiba, E.S. Zijlstra, M.E. Garcia, H. Takahashi, K. Watanabe, M. Kitajima, Y. Matsumoto, K.G. Nakamura, and K. Ohmori, *Nature Communications* 4, 2801 (2013).

6) "Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas," N. Takei, C. Sommer, C. Genes, G. Pupillo, H. Goto, K. Koyasu, H. Chiba, M. Weidemüller, and K. Ohmori, *Nature Communications* **7**, 13449 (2016).

解良 聡(教授) KERA, Satoshi

1996年千葉大学工学部卒、 1998年日本学術振興会特別 研究員、2001年千葉大学大学 院自然科学研究科修了(博士 (理学))、千葉大学大学院助手、 ブルツブルグ大学ポスドク 研究員、千葉大学大学院融合 科学研究科准教授を経て、 2014年4月より現職。 TEL: 0564-55-7413

mail: kera@ims.ac.jp

- 1996 B.S. Chiba University 1998 M.E. Chiba University
- 2001 Ph.D. Chiba University
- 1998 Research Fellowships for Young Scientists (JSPS)
- 2001 Assistant Professor, Chiba University
- 2003 Research Associate, Institute for Molecular Science

Postdoctoral Fellow, Wuerzburg University

2004 Assistant Professor, Chiba University

2007 Associate Professor, Chiba University

2009 Visiting Associate Professor, Institute for Molecular Science

2013 Adjunct Lecturer, The Open University of Japan

> Visiting Associate Professor, Soochow University

2014 Professor, Institute for Molecular Science

> Professor, The Graduate University for Advanced Studies

Visiting Professor, Chiba University

Keywords>

Photoelectron spectroscopy, Molecular Film, Electronic State

機能性大型分子材料の電子物性評価 Electronic Property of Functional Organic Materials

エネルギー・環境問題に対応すべく、有機半導体と呼 ばれる機能性を示す大型分子群を利用したソフトデバ イス(太陽電池やフレキシブル照明など)の研究が賑わ いを見せ、多彩な構造の分子材料が日夜設計・開発され ています。しかし依然として個々の分子の特徴を区別 し、要望されるデバイスの中で適切な材料として自在に 活用することができていません。これは本来の特性とし て絶縁物たる分子群が「有機半導体」として材料機能を 示す理由とその真の特徴を認識できていないことに帰 着します。具体的には、デバイスにおける無機物(金属電 極等)が接する界面における分子の変性はもちろんのこ と、構造異方性の高い凸凹した分子界面の原子レベル での相互作用についての理解が全く不十分であるとい うことです。また諸物性の発現機構や原理(相関や因 果)、その制御のための量子論的な理解が不十分で、適 切なガイドラインが構築されぬまま手探り状態の応用 研究が続けられていることを意味します。

光電子分光法による電子状態測定は「分子の中の電 子の姿」を量子論的に明らかにする上で極めて有効です が、分子材料に対する実験的な難しさ(試料作製方法、 光損傷や帯電回避法など測定技術)などから、電気伝導 特性の中身とリンクさせることが容易ではありませんで した。近年ようやく技術が成熟し、高感度角度分解紫外 光電子分光(ARUPS)の実現による研究成果が積み重 ねられ、有機半導体の電子の特徴が見え始めています。 分子集合体における強い電子一振動結合状態や、電子 の"局在性の度合い"に依存した物理現象に着目し、弱い 相互作用に特徴づけられる電子物性について重要な話 題を提供していきたいと考えています。

参考文献

1) N. Ueno, S. Kera, "Electron spectroscopy of functional organic thin films: Deep insights into valence electronic structure in relation to charge transport property", *Prog. Surf. Sci.* **83**, 490-557 (2008).

2) S. Kera, H. Yamane, N. Ueno, "First principles measurements of charge mobility in organic semiconductors: Valence hole-vibration coupling in organic ultrathin films", *Prog. Surf. Sci.* 84, 135-154 (2009).

 F. Bussolotti, S. Kera, N. Ueno, "Potassium doping of single crystalline pentacene thin film", *Phys. Rev. B* 86, 155120-1-9 (2012).
 F. Bussolotti, S. Kera, K. Kudo, A. Kahn, N. Ueno, "Gap states in pentacene thin film induced by inert gas exposure", *Phys. Rev. Lett.* 110, 267602-1-5 (2013).

5) F. Bussolotti, J. Yang, T. Yamaguchi, Y. Nakayama, M. Matsunami, H. Ishii, N. Ueno, S. Kera, "Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors" *Nat. Commun.* **8** 173-179 (2017).

Functional organic materials (FOM) have recently attracted considerable attention both for fundamental research and device applications because of peculiar properties not found in inorganics and small molecules. However the mechanisms and its origin of various device characteristics are still under debate. Scientific mysteries would be raised because people have believed that electronic structure of FOM would be conserved as in an isolated molecule for solid phases due to van der Waals interaction. To reveal characteristics of FOM the key investigation would be on precise experiments on the electronic structure at various interfaces, including organic-organic and organic-inorganic (metal/semiconductor) contacts. In these systems, the impacts of weak interaction on the electronic structure would appear as small intensity modulation of photoelectron-emission fine features depending on adsorption and aggregation on the surface. By recent development in the instrumental we can assess hidden fine structures in the electronic states, e.g. electron-phonon coupling, quasi-particle states, very small gap-state DOS, weak band dispersion and dynamic electronic polarization. To elucidate what happens for the FOM at the interface upon weak interaction, an evaluation on the wave-function spread of the electronic states would be very important because the interface state of physisorbed system is described to be a delocalized molecular orbital state depending on the strength of weak electronic coupling (from vdW interaction to hybridization). Seeing a modification of electron wave function upon weak electronic coupling as well as strong electron-phonon coupling is central issue on our agenda.

A rich assortment in the structure of functional molecular materials and variety in the photoelectron spectral feature.

加藤 政博(教授) KATOH, Masahiro

1981年東北大学理学部卒、 1986年東京大学大学院理学 系研究科中退、理学博士。高工 ネルギー加速器研究機構物 質構造科学研究所助手を経 て2000年3月分子科学研究 所助教授着任、2004年1月よ り現職。

TEL: 0564-55-7206

- FAX: 0564-54-7079
- mail: mkatoh@ims.ac.jp

1982 B.S. Tohoku University

- 1997 Ph.D. Tohoku University
- 1986 Reseach Associate, National Laboratory for High Energy Physics
- 2000 Assistant Professor, Institute for Molecular Science
- 2004 Professor,Institute for Molecular Science

Professor, The Graduate University for Advanced Studies

<Keywords>
 Accelerator,
 Beam Physics,
 Astrobiology

相対論的電子ビームを用いた光発生 Light Source Developments by Using Relativistic Electron Beams

分子科学研究所の保有する電子加速器UVSORはお よそ30年前に建設されたシンクロトロン光源です。周長 53m、電子エネルギー7.5億電子ボルトと小型で、テラ ヘルツ波から軟X線といったシンクロトロン光としては 比較的低エネルギー(長波長)の領域を得意とします。 何度かの改造を経て、現在でも、同種の装置の中では世 界最高水準の高性能を誇ります。私たちの研究グルー プでは、このUVSORの性能向上を図りながら、高エネ ルギー電子ビームを使った光発生に関する研究を行っ ています。

高エネルギー電子が強磁場中を走るときに発する強 力な白色光がシンクロトロン光です。テラヘルツ波から X線まで広大な波長域で高い指向性、偏光特性を有する 光です。このシンクロトロン光が本来持っている特性を 十分に引き出すには、指向性、強度、安定性に優れた電 子ビームが必須です。最新の加速器技術の導入、独自の 技術開発により、世界最高水準の高品質電子ビームの 生成を目指して研究を続けています。また、より強力な シンクロトロン光を発生するための挿入型光源と呼ばれ る装置の開発にも取り組んでいます。

シンクロトロン光は優れた光源ですが、レーザーのよう なコヒーレントな光源ではありません。我々は、レーザー のような特質を持つシンクロトロン光、すなわち、コヒー レントシンクロトロン光の発生に関する研究を進めてい ます。シンクロトロン光を光共振器の中に閉じ込め電子 ビームと繰り返し相互作用させることでレーザー発振が 実現できます。自由電子レーザーと呼ばれる技術です。 UVSORでは安定性や強度に優れた共振器型自由電子 レーザーの開発を進めてきました。電子ビームと外部か ら導入したレーザー光を相互作用させることで、テラヘ ルツ波や真空紫外領域でコヒーレント光を発生すること にも成功しています。また、レーザー光を電子ビームに 衝突させることで、エネルギー可変、偏光可変、超短パ ルスのガンマ線の発生に成功しています。最近では、光 渦と呼ばれる螺旋状の波面を持つ奇妙な光の発生にも 成功しました。

相対論的電子からの光の放射、放射された光の物質 との相互作用は、基礎物理学の対象としても興味深く、 また、天体物理学、プラズマ物理学から物質科学、生命 科学、アストロバイオロジーなど様々な分野において重 要な役割を果たします。我々は、幅広い分野の研究者と 協力して、光に関する新しい研究を進めています。

UVSOR is a synchrotron light source providing low energy synchrotron light ranging from terahertz wave to soft X-rays. Although it was constructed about 30 years ago, its performance is still in the world top level. This is the result of the continuous effort on improving the machine. Our research group has been developing accelerator technologies toward producing bright and stable synchrotron light, such as high brightness electron beam optics, novel insertion devices or state-of-the-art beam injection technique. We have been also developing novel light source technologies toward producing photons with excellent properties, such as free electron laser, coherent synchrotron radiation and laser Compton gamma-rays. We are also investigating beam physics which would be the basis of the novel light source technologies. We have revealed that an electron in circular motion radiates strange photons called optical vortices, which possesses spiral phase structure and carrying orbital angular momentum. We have started exploring their applications as novel probes for material sciences and their possible roles in nature.

Radiation from relativistic electrons and its interaction with matters are also interesting as subjects of basic physics, astrophysics, plasma physics, materials science, life science including astrobiology. In cooperation with researchers in a wide range of fields, we are exploring new research areas.

UVSOR-III Electron Storage Ring and Synchrotron Radiation Beam-lines.

The circumference is 53m. The electron energy is 750 MeV. Electrons are circulating in the storage ring at almost the speed of light and radiate intense vacuum ultraviolet light.

参考文献

1) M. Katoh, M. Fujimoto, H. Kawaguchi, K. Tsuchiya, K. Ohmi, T. Kaneyasu, Y. Taira, M. Hosaka, A. Mochihashi, Y. Takashima, "Angular Momentum of Twisted Radiation from an Electron in Spiral Motion", *Phys. Rev. Lett.* **118**, 094801 (2017)

2) M. Katoh, M. Fujimoto, N. S. Mirian, T. Konomi, Y. Taira, T. Kaneyasu, M. Hosaka, N. Yamamoto, A. Mochihashi, Y. Takashima, K. Kuroda, A. Miyamoto, K. Miyamoto, S. Sasaki, "Helical Phase Structure of Radiation from an Electron in Circular Motion", *Scientific Reports* **7**, 6130 (2017)

田中 清尚(准教授) TANAKA, Kiyohisa

2000年東京大学理学部卒業、 2005年東京大学大学院理学 研究科博士課程修了、理学 博士。米国スタンフォード大学 及びローレンスバークレー 国立研究所博士研究員、大阪 大学助教、特任准教授を経て 現職。

TEL: 0564-55-7202

mail: k-tanaka@ims.ac.jp

2000 B.S.University of Tokyo

2005 Ph.D. University of Tokyo

Postdoctoral Fellow, Stanford University and Lawrence Berkeley National Laboratory

2008 Assistant Professor, Osaka University

2013 Associate Professor, Osaka University

2014 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

Keywords>

Strongly Correlated Electron System, Synchrotron Light, Photoemission ■光物性測定器開発研究部門 Advanced Solid State Physics

電子構造の直接観測による 固体物性の発現機構の解明

Angle-Resolved Photoemission Study on Strongly Correlated Electron Materials

近年、強相関電子系とよばれる物質群が話題を集め ています。これらの物質中では、電子の密度が非常に高 いため電子同士が互いに強く相互作用しあっていて、固 体物理学の基本理論であるバンド理論では電子の運 動を説明できません。そして従来理論の予想を遥かに超 えたきわめて多彩で面白い物性、例えば高温超伝導、 巨大磁気抵抗、非フェルミ液体などが出現することが 最近の研究でわかってきました。このような、強相関 電子系の物質は、電子の電荷・スピン・軌道を制御する ことで、これまでのエレクトロニクスを凌駕するスピン トロニクス、強相関エレクトロニクスの電子デバイスに なる可能性を秘めており次世代のエレクトロニクスを 担う物質として期待されています。

これらの物性は、物質のフェルミ準位のごく近傍の 電子状態が担っていて、その電子状態を観測することは 物性発現機構の理解、そして新物性の発見には欠かせ ません。われわれのグループは、UVSOR-IIのシンクロ トロン光を使って、強相関伝導系物質の分光実験を行 うことで、電子状態を直接観測する研究を行っています。 シンクロトロン光は、テラヘルツ・遠赤外からX線まで 切れ目のない連続な光であり、かつ高輝度でかつ偏光 特性に優れており、実験室とは違ったまったく新しい 分光実験を行うことができます。また強相関電子系 物質では、電子の電荷に加えて、スピンが物性に大きく 寄与します。そこで世界に先駆けて、固体中の電子の 運動だけでなく、そのスピンの情報まで同時に取得で きる分光装置の開発を行っています。

このように新奇機能性を生み出す電子構造を観測す るためのシンクロトロン光を使った新しい分光法の開 発し、様々な物質の物性の発現機構の解明を目指して います。

参考文献

 K. Tanaka, W.S. Lee, D.H. Lu, A. Fujimori, T. Fujii, Risdiana, I. Terasaki, D.J. Scalapino, T.P. Devereaux,
 Z. Hussain, Z.-X. Shen, "Distinct Fermi-momentumdependent energy gaps in deeply underdoped Bi2212." *Science* 314, 1910-1913 (2006).

2) W.S. Lee, I.M. Vishik, K. Tanaka, D.H. Lu, T. Sasagawa, N. Nagaosa, T.P. Devereaux, Z. Hussain, Z.-X. Shen, "Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212." *Nature* **450**, 81-84 (2007). Strongly correlated electron materials has attracted more attentions in the last few decades because of their unusual and fascinating properties such as high-Tc superconductivity, giant magnetoresistance, heavy fermion and so on. Those unique properties can offer a route toward the next-generation devices. We investigate the mechanism of the physical properties as well as the electronic structure of those materials by using angle-resolved photoemission spectroscopy (ARPES), a powerful tool in studying the electronic structure of complex materials, based on synchrotron radiation.

High energy resolution angle-resolved photoemission spectroscopy beamline BL7U at UVSOR synchrotron.

■電子構造研究部門 Electronic Structure

物質分子科学のための新しい分光法の開発

Exploitation of Novel Spectroscopic Methods for Material and Surface Science

現代の物質科学は高性能だけでなく安全安心などさま ざまな観点から調和のとれた物質材料の創製を求められ ており、物質材料・素子の特性を詳細に評価・解析し、より よい物質材料設計を行う必要があります。そのため、物質 材料を解析する手法の空間分解能や時間分解能がます ます求められています。我々は、主に大型加速器から放射 されるX線(シンクロトロン放射光)を用いた分光学的 手法に基づいた新しい測定手法の開発とその応用に取り 組んでいます。

我々は、2017年に大気圧下でのX線光電子分光測定に 世界で初めて成功しました。光電子分光法は、通常高真空 下での測定が必須ですが、エネルギーの大きい硬X線を 用いることなどで、1気圧までの測定が可能な光電子分光 装置が開発できました。これを用いて、燃料電池の動作下 での状態解析により性能の失活機構や被毒の原因究明 を行っています。

また、高速時間分解X線吸収分光測定を手掛けており、 100ピコ秒以下の時間分解能で短寿命光励起状態の 構造解析を行っています。水から水素を作る光触媒の 高性能化を目標に、光触媒酸化タングステン(VI)の反応 機構の鍵となる光励起状態定量的構造解析に成功して います。

参考文献

 "Non-contact electric potential measurements of electrode components in operating polymer electrolyte fuel cell by near ambient pressure XPS" L. Yu, Y. Takagi, T. Nakamura, O. Sekizawa, T. Sakata, T. Uruga, M. Tada, Y. Iwasawa, G. Samjeské and T. Yokoyama, *Phys. Chem. Chem. Phys.* **19**, 30798 (2017).

2) "X-ray photoelectron spectroscopy under real ambient pressure conditions" Y. Takagi, T. Nakamura, L. Yu, S. Chaveanghong, O. Sekizawa, T. Sakata, T. Uruga, M. Tada, Y. Iwasawa and T. Yokoyama, *Appl. Phys. Exp.* **10**, 076603 (2017).

 "Dynamics of Photoelectrons and Structural Changes of Tungsten Trioxide Observed by Femtosecond Transient XAFS" Y. Uemura, D. Kido, Y. Wakisaka, H. Uehara, T. Ohba, Y. Niwa, S. Nozawa, T. Sato, K. Ichiyanagi, R. Fukaya, S. Adachi, T. Katayama, T. Togashi, S. Owada, K. Ogawa, M. Yabashi, K. Hatada, S. Takakusagi, T. Yokoyama, B. Ohtani, and K. Asakura, *Angew. Chem. Int. Ed.* 55, 1364 (2016).

4) "Anharmonicity and Quantum Effects in Thermal Expansion of an Invar Alloy" T. Yokoyama and K. Eguchi, *Phys. Rev. Lett.* **107**, 065901 (2011).

5) "Magnetic circular dichroism near the Fermi level" T. Nakagawa and T. Yokoyama, *Phys. Rev. Lett.* **96**, 237402 (2006).

For the developments of novel functional materials, it is quite important to exploit simultaneously new analytical methods based on advanced technology. Novel materials and devices often require spatial and/or time resolved analysis to optimize their qualities. In our group, we have been exploiting spectroscopic methods for material and surface science using mainly synchrotron radiation (SR) and partly lasers.

The present first subject is the exploitation of ambient pressure hard x-ray photoelectron spectroscopy (HAXPES) and its application to polymer electrolyte fuel cells (PEFC) under working conditions. In 2017, we succeeded in the HAXPES measurement under real ambient pressure of 10⁵ Pa for the first time in the world. We are investigating working PEFC by the technique for the elucidation of degradation and/or poisoning mechanisms of PEFC to improve its performance with longer life time.

The second subject is the fast time resolved x-ray absorption fine structure (XAFS) measurements of short-lived photoexcited states in photocatalysts in order to understand detailed mechanisms of photocatalytic reactions such as water photodecomposition to yield hydrogen and to improve their functionalities and efficiencies. Time resolving power is <100 ps using the laser-pump and SR-probe method. Recently, we successfully determined the quantitative local structure for the photoexcited polaron state of a visible-light active photocatalyst of tungsten(VI) oxide.

Ambient pressure hard x-ray photoelectron spectroscopic system. (a) Apparatus installed at SPring-8 Beamline 36XU. (b) Front corn with a 30-µm aperture of the electron energy analyzer, made by Equipment Development Center, IMS. (c) Au 4f HAXPES of Au(111) at a real ambient pressure of 10⁵ Pa. (d) Hydrogen pressure dependent Pd 3d_{5/2} HAXPES of Pd black. An abrupt change is found at ~3 kPa due to the transformation between metallic Pd and Pd hydride states.

横山 利彦(教授) YOKOYAMA, Toshihiko

1983年東京大学理学部卒業、 1987年同大学大学院理学系 研究科博士課程中退、理学 博士。1987年広島大学理学部 助手、1993年東京大学大学院 理学系研究科助手、1994年 同講師、1996年同助教授を 経て、2002年1月より現職。 2007年4月〜2013年3月分子 スケールナノサイエンスセン ター長、2011年4月〜現在 物質分子科学研究領域主幹、 2014年9月〜2016年3月機器 センター長併任。

TEL: 0564-55-7345

FAX: 0564-55-7448

mail: yokoyama@ims.ac.jp

1983	B.S.The University of
	Tokyo
1985	M.S. The University of
	Tokyo
	, i
1990	Ph.D. The University of
	Tokyo
1987	Research Associate,
	Hiroshima University
1993	Research Associate

The University of Tokyo

1994 Lecturer, The University of Tokyo

1996 Associate Professor, The University of Tokyo

2002 Professor, Institute for Molecular Science

Professor, The Graduate University for Advanced Studies

Keywords>

X-Ray Absorption Spectroscopy,

Surface & Thin Film Magnetism,

Ambient Pressure Hard X-Ray Photoelectron Spectroscopy

杉本 敏樹(准教授) SUGIMOTO, Toshiki

2007年京都大学理学部卒、 2011年東京大学大学院工学 系研究科物理工学専攻博士 課程修了、工学博士。日本学 術振興会特別研究員(DC2・ PD)、京都大学大学院理学 研究科化学専攻助教、JST さきがけ研究員を経て現職。

TEL: 0564-55-7280

mail: toshiki-sugimoto@ims.ac.jp

2007 B.S., Kyoto University

2011 Ph.D., The University of Tokyo (Doctor of Engineering)

> Research Fellowship for Young Scientists (DC2·PD), Japan Society for the Promotion of Science

2012 Assistant Professor, Kyoto University

2016-PRESTO Researcher, Japan Science and Technology Agency

2018-Associate Professor, Institute for Molecular Science

⟨Keywords⟩ Water Molecule, Molecular Spectroscopy

Surface Science

■電子構造研究部門 Electronic Structure

固体表面における分子集合体の特異的な構造物性・ 化学的機能・量子ダイナミクスの探求 Unique Structures, Physicochemical Properties and

Quantum Dynamics of Molecular Aggregates at Solid Surfaces

固体の表面は固体の内部とは異なる構造を有している ため、物性や化学機能、量子ダイナミクス等を支配する 電子の状態は表面と内部とでは全く異なったものになり ます。この固体表面は気相や液相にある原子・分子が固 体と出会う重要な場を提供しています。原子や分子が表 面に吸着して固体と相互作用する際には、気相や液相で は発現しない新奇な物性や化学機能が創発されること がしばしばあります。こうした固体表面における特異な現象 は、我々の身近なところでは「触媒・腐食・接着などの化学 反応」や「光触媒・燃料電池・太陽電池などのエネルギー 変換」において実生活とも密接に関わっています。

私たちは、水素、メタン、水分子などの身近な軽分子に 興味を持ち、実用物質の不均一な表面やナノレベルで 構造を規定・制御したモデル固体表面に吸着・凝集した 分子集合体がどのようなメカニズムで特異的な構造物 性や化学機能、量子ダイナミクスを発現させているのか を解明することを目指しています1-50。多体の相互作用に よって発現する複雑な固体表面現象を素過程のレベル から微視的に明らかにするために、赤外光や可視光に加 えて紫外光やX線といった様々なエネルギー領域の光 (連続光・パルスレーザー光)や電子線、走査型顕微鏡を 用いた最先端の表面分光研究・物理化学研究に挑戦し ています(Figs.1,2)。また、従来の実験方法では観測自 体が不可能であった"水素(水素結合ネットワーク中のプ ロトン)の局所構造"を可視化するための"革新的な表面 顕微分光計測法"を開発することにも世界に先駆けて挑 戦しています。

水分子の集合体が関与する固体表面現象は、物理学・ 化学・工学・生物学・地学といった広い範囲の分野にお いて基礎・応用の両観点で極めて重要な研究対象です。 私たちは、22世紀につながる人類の知見・基礎学理を構 築することを目指し、このように学術的・実学的に興味深 い固体表面現象をナノレベルの目線で解き明かす基礎 研究を展開しています。

参考文献

 K. Shirai, G. Fazio, T. Sugimoto et al., Water-assisted hole trapping at highly curved surface of nano-TiO₂ photocatalyst, *J. Am. Chem. Soc.* **140**, 1415 (2018).
 T. Sugimoto et al., Inelastic Electron Tunneling Mediated by Molecular Quantum Rotator, *Phys. Rev. B* **96**, 241409(R) (2017).

3) T. Sugimoto et al., Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in heteroepitaxial ice film, *Nature Physics* 12, 1063 (2016).
4) K. Shirai, T. Sugimoto et al., Effect of Water Adsorption on Carrier Trapping Dynamics at the Surface of Anatase TiO₂ Nanoparticles. *Nano Lett.* 16, 1323 (2016).

Surfaces and interfaces are the places where the spatially isolated electrons in molecules meet delocalized ones in substrates such as metals. Under such circumstances, molecules behave very differently from those in gas and liquid phases. Unexpected molecular processes sometimes take place at surfaces and interfaces. There are many important applications where surfaces/interfaces play an important role, such as photovoltaic application for energy conversion and catalytic application for chemical reaction. These all depend on specific many-body complex interactions that are not always fully understood. Our ultimate aim is to elucidate such cooperative interactions at the molecular level.

By using state-of-the-art molecular spectroscopy in combination with sophisticated surface scientific techniques, we have elucidated unique structures, physical properties, chemical functions, and quantum dynamics of hydrogen, water molecules and their assemblies at surfaces/interfaces of solid materials¹⁻⁵⁾. In addition, we are challenging to develop innovative microspectroscopy with atomic resolution for directly observing the local structure of protons in the unique hydrogen-bond network of water molecular aggregates at solid surfaces/interfaces.

Fig. 1 Infrared-visible sum-frequency-generation (SFG) spectroscopy of water molecules on solid surface ³⁾.

Fig. 2 Unimolecular inelastic-electron-tunneling (IET) spectroscopy of quantum rotator on solid surface ²⁾.

5) T. Sugimoto et al., Nuclear Spin Dynamics of Molecular Hydrogen Adsorbed on Solid Surfaces –Interdisciplinary Surface Electromagnetic Process-. *J. Phys. Soc. Jpn.* **71**, 668 (2016).

中村 敏和(准教授) NAKAMURA, Toshikazu

1987年京都大学理学部卒、 1992年同大学院理学研究科 博士課程修了、理学博士。学習 院大学理学部助手を経て 1998年6月より現職。 TEL: 0564-55-7381 FAX: 0564-54-2254 mail: t-nk@ims.ac.jp

1987 B.S. Kyoto University

1995 Dr.Sci. Kyoto University

- 1992 Assistant Professor, Gakushuin University
- 1998 Associate Professor, Institute for Molecular Science

2003 Associate Professor, The Graduate University for Advanced Studies

〈Keywords〉

Organic Conductor, Electron Spin Resonance (ESR), Nuclear Magnetic Resonance (NMR)

機能性分子性固体の磁気共鳴研究 Magnetic Resonance Studies for Functional Molecular-Based Solids

私たちのグループでは、電子スピン共鳴(ESR)や核 磁気共鳴(NMR)を主たる実験手法として分子性物質の 研究を行っています。物質の示す性質の起源に迫る物性 物理分野の基礎研究を行うとともに、新しい分子性物質 の機能性を物質分子科学の観点から探索しています。 磁気共鳴は、物質中の電子スピンや核スピンを探針 (プローブ)として物質の電子状態や構造情報を得る分 光計測手法です。私たちは独自に改良した固体幅広核 磁気共鳴装置や、分子研が世界に誇るパルス・強磁場を 用いた最先端の電子スピン共鳴装置を利用し、研究を 行っています。

プラスティックは絶縁体の代表格ですが、電気化学酸 化等を行うことで電気を流すようになります。分子性物 質が電気を流すことが知られてから半世紀以上経ち、超 伝導体も発見されていますが、まだ未解決な問題が多く 残っています。このような物質群は分子性導体や有機導 体と呼ばれ、現在も国内外の研究者によって盛んに研究 が行われています。これらの分子性導体のもっとも顕著 な特性として、多様な基底状態(極低温における電子状 態)を取ることがあげられます。異なるサイズのイオンに より単位格子の大きさを変えたり、あるいは物理圧力を わずかに加えるだけで、金属、絶縁体、強誘電、反強磁 性、超伝導といった種々の物性を示します。これら分子 性導体の電子状態を調べることは、物性物理が直面して いる諸問題の根元的理解につながります。私たちは分子 性導体の示すこのような特異な電子状態に関心を持ち、 研究を行っています。

この他、導電性や磁性を持つポリマーや金属錯体など に対して、詳細な磁気共鳴測定を行い、電子状態の変化 や機能性を明らかにしています。 Magnetic resonance measurements are advantageous for studying fundamental electronic properties and for understanding the detailed electronic structures of molecular based compounds. Developing an understanding of the electronic phases and functionality of these materials enables us to perform systematic investigations of low-dimensional, highly correlated electron systems and functional materials. Competition between the electronic phases in molecular-based conductors has attracted much attention. The investigations of such electronic phases by magnetic resonance measurements are important to understanding unsolved fundamental problems in the field of solid state physics, and to explore novel functionalities in the field of material science.

In this study, we performed broad-line NMR and ESR measurements on molecular-based conductors to understand electron spin dynamics and functionality in low-temperature electronic phases.

Multi-frequency Pulsed ESR Spectrometer

参考文献

1) M. Asada, and T. Nakamura, "Magnetic resonance investigation for possible antiferromagnetic subphase in (TMTTF)₂Br," *Phys. Rev. B* **96**, 12512 (2017).

 E. Jin, M. Asada, Q. Xu, S. Dalapati, M. A. Addicoat, M. A. Brady, H. Xu, T. Nakamura, T. Heine, Q. Chen, D. Jiang, "Two-dimensional sp2 carbon–conjugated covalent organic frameworks," *Science* **357**, 673-676 (2017).

3) S. Kitou, T. Fujii, T. Kawamoto, N. Katayama, S. Maki, E. Nishibori, K. Sugimoto, M. Takata, T. Nakamura, and H. Sawa, "Successive Dimensional Transition in (TMTTF)₂PF₆ Revealed by Synchrotron X-ray Diffraction," *Phys. Rev. Lett.*, **119**, 06570 (2017). 4) T. Nakamura, K. Furukawa, T. Terauchi, and Y. Kobayashi, "Microscopic Evidence of a Metallic State in the One-pot Organic Conductor, Ammonium Tetrathiapentalene Carboxylate," *Phys. Status Solidi RRL* 9, 480 – 484 (2015).
5) F. Iwase, K. Sugiura, K. Furukawa and T. Nakamura, "¹³C NMR study of the magnetic properties of the quasi-one-dimensional conductor (TMTTF)₂SbF₆," *Phys. Rev. B* 84, 115140 (7 pages) (2011).

6) K. Furukawa, K. Sugiura, F. Iwase and T. Nakamura, "Structural Investigation of the Spin-singlet Phase in (TMTTF)₂I," *Phys. Rev. B* **83**, 184419 (5 pages) (2011).

平本 昌宏(教授) HIRAMOTO, Masahiro

1984年大阪大学大学院基礎 工学研究科化学系博士課程 中退、84年分子科学研究所 文部技官、88年大阪大学工学 部助手、97年大阪大学大学 院工学研究科准教授を経て、 2008年より現職。専門:有機 半導体の光電物性と太陽電池、 デバイス応用。

TEL: 0564-59-5537

mail: hiramoto@ims.ac.jp

1984 Osaka University, Faculty of Engineering Science

1986 Ph.D (Engineering) Osaka University

1984 Institute for Molecular Science, Technical Associate

1988 Faculty of Engineering, Osaka Univ., Research Associate

1997 Faculty of Engineering, Osaka Univ., Associate Professor

2008 Professor, Institute for Molecular Science

> Professor, The Graduate University for Advanced Studies

Keywords

Organic Semiconductors, Organic Solar Cells, ppm-Doping 有機太陽電池 Organic Solar Cells

エネルギー問題の解決は科学者の責務です。特に、 我が国において、エネルギー資源がない状況は、明治 維新から現在に至るまで全く変わっておらず、先の大 戦、3.11の原子力災害のような、悲劇的で大きな歴史 の転換は、常にエネルギーをめぐって起こっています。 太陽電池は我が国のエネルギー自給の切り札となり ます。また、「エネルギーを制するものは世界を制す る」との言葉にあるように、石油に代わって、21世紀の 世界の基幹産業になります。

以上の考えに基づき、平本グループでは、次世代太 陽電池の有力候補である、有機太陽電池の研究を 行っています。

有機太陽電池は、最近スマホ画面にもなっている有 機ELの太陽電池版です。有機太陽電池は、軽量なフ レキシブルシートの形で、印刷によって新聞のように 大量安価に作れ、屋根、壁、窓にはりつけたり、自動車 にペンキのように塗って使うなど、これまでのシリコン 太陽電池とはちがった全く新しい使い方になります。

平本は、1991年に、有機ブレンド接合(図1)のコン セプト¹¹を世界に先がけて提案し、有機太陽電池はこ の構造をつかっています。また、1990年に、有機タン デム接合を世界で初めて提案し²¹、近年の最高変換効 率は有機タンデム接合セルによるものです。

有機太陽電池の分野でブレイクスルーを起こすに は、有機半導体の物性物理学の深い理解に基づいて、 太陽光によって生じる電流、電圧を大きくしていく必 要があります^{3),5)}。最近、有機単結晶太陽電池の研究で 大きな成果を発表しました⁴⁾。若い人たちが、この研究 に加わっていただくことを期待しています。

参考文献

1) M. Hiramoto, H. Fujiwara, M. Yokoyama, "Three-layered organic solar cell with a photoactive interlayer of codeposited pigments", *Appl. Phys. Lett.*, **58**, 1062-1064 (1991).

2) M. Hiramoto, M. Suezaki, M. Yokoyama, "Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell", *Chem. Lett.*, **1990**, 327-330 (1990).

3) M. Hiramoto et al., "Bandgap science for organic solar cells", *Electronics*, **3**, 351-380 (2014).

4) C. Ohashi, S. Izawa, M. Hiramoto et al., "Hall effect in bulk-doped organic single crystal", *Adv. Mater.*, **29**, 1605619 (2017).

5) N. Shintaku, M. Hiramoto, S. Izawa, "Effect of trap-assisted recombination on open-circuit voltage loss in phthalocyanine/fullerene solar cells", *Org. Electron.*, **55**, 69-74 (2018).

Organic solar cells have been intensively studied due to many advantages like flexible, printable, light, low-cost, fashionable, etc. In 1991, Hiramoto invented "blended junction" (Fig. 1)¹⁾ and "tandem junction"2) of organic solar cells, which are fundamental concepts in the present organic solar cells. We have been focused on the establishment of "bandgap science for organic solar cells."³⁾ We believe that the following features are indispensable. (i) A ppm-level doping strategy should be applied to sub-ppm purified organic semiconductors for the complete removal of uncontrollable doping by oxygen from the air. (ii) Complete pn-control, i.e., the observation that every single and blended organic semiconductor shows both *n*- and *p*-type characteristics by impurity doping alone, should be achieved. (iii) Doping in the bulk of organic single crystals without grain boundaries is necessary for precise clarification of the nature of the doping effects.

Recently, we have succeeded the fabrication of ppm-level doped organic single crystals and measurements of their Hall effects using our original ultra-slow deposition technique at a rate of 10⁻⁹ nm/s (Fig. 2)⁴⁾. This is a foundation for the first organic single crystal solar cells.

We fervently hope that young researchers will take up the challenge of working in the interdisciplinary field of organic solar cells to help develop the next generation of cells for renewable energy.

Fig. 1 Concept of blended junction.

Fig. 2 ppm-doped organic single crystal (AFM) formed by ultra-slow deposition of 10⁻⁹ nm/s having a rotating shutter.

西村 勝之(准教授) NISHIMURA, Katsuyuki

1994年兵庫県立姫路工業 大学理学部(現・兵庫県立大学) 卒業、1999年同大学大学院 理学研究科博士課程終了・理学 博士。米国立高磁場研究所、 フロリダ州立大学博士研究員、 横浜国立大学工学研究院助手 を経て、2006年4月より現職。 TEL: 0564-55-7415

FAX: 0564-55-7415

mail: nishimur@ims.ac.jp

1994 B.S. Himeji Institute of Technology

1999 Ph.D. Himeji Institute of Technology

1999 Postdoctoral Fellow, Florida State University, National High Magnetic Field Laboratory

2001 Assistant Professor, Yokohama National University

2006 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

(Keywords)
Solid State NMR,
Biomolecules,
Developments

固体核磁気共鳴法による生体分子・分子材料の解析 Solid-State NMR for Molecular Science

核磁気共鳴法(NMR)は原子核の持つ磁気モーメント が磁場中で小さい磁石として振舞う性質を利用して、測 定対象にラジオ波領域の電磁波を照射することにより 非破壊で物質内部の分子の詳細な構造や運動性に関す る原子分解能での情報を得ることができます。固体 NMRは物理学者によってその基礎が築かれ、物理化学 者によって化学的情報を得る手段として方法論が発展 してきました。固体NMRは結晶や液晶から、粉末のよう なアモルファス試料や粘性の高い液状試料まで非常に 多様な物質に対して適用可能であり、特に生体分子への 適用が注目されています。

当研究グループでは分子に関する様々な情報を得る ための新規固体NMR測定法の開発を行っています。 NMRで観測する内部相互作用には、静磁場に対する分 子の相対角度を変化させる空間項の変調および、特定 の強度、時間間隔でのラジオ波照射により核スピン角運 動量項への外部摂動を与えることが可能です。そのた め、これらの外部摂動を適切に組み合わせる実験をデザ インして特定の内部相互作用を選択的に消去、復活させ ることが可能です。それら内部相互作用の精密な観測、 解析により原子間距離や角度情報等の分子の幾何情報 を得ることが出来ます。さらに緩和時間やスペクトル線 形解析から特定の時間領域の分子運動性を同定するこ とが可能です。

これまで、分子の立体構造決定に有効な精密原子間 距離測定法の原理的な問題の解析¹⁾、低発熱型感度向 上法²⁾、および角度測定法の開発³⁾を行いました。さらに 脂質との相互作用により機能する膜タンパク質として、 インフルエンザウイルスA由来の⁺Hチャンネル⁴⁾、膜表 在性タンパク質フォスフォリパーゼC-δ1脂質結合ドメイン の機能発現機構解析⁵⁾、アルツハイマー病に関与する アミロイドβの脂質膜上で形成される会合体の構造解析⁶⁾ などを行ってきました。さらに絹⁷⁾などの生体高分子材料、 合成高分子複合体の構造解析⁶⁾など所内外の複数の 研究機関と共同研究も行っています。 In order to elucidate functions of molecules, characterizations of the molecules are essential. There are varieties of important molecules, which are insoluble to any solvents and functional at amorphous state. Solid-state NMR enables to obtain variety of information at atomic resolution without damages of molecules and significant restrictions. Thus, solid-state NMR is one of the essential tools for the characterizations of those molecules.

We have been working for methodology developments of solid-state NMR such as the analyses of error factors of precise distance measurements¹⁾, the developments of techniques for sensitivity enhancement without sample heating²⁾ and 2D correlation techniques to obtain orientational information of molecules³⁾. In addition, as studies for structural biology, we have been working for functional and structural characterizations of membrane proteins and peptides such as ⁺H channel from influenza virus A⁴⁾, a peripheral membrane protein of phospholipase C-δ1 PH domain⁵⁾, and amyloid-β oligomers induced on lipid membranes⁶⁾. Furthermore, as studies for material science, we have been working for characterizations of variety of molecular materials such as silk⁷, and supramolecules based on synthetic polymers⁸⁾ through collaborations with several research groups.

Outline of our studies

参考文献

1) K. Nishimura*, A. Naito."REDOR in Multiple Spin System", *Modern Magnetic Resonance*, Springer, The Netherlands (2006).

 K. Nishimura*, A. Naito, Chem. Phys. Lett. 380, 569-576 (2003).

 K. Nishimura*, A. Naito, Chem. Phys. Lett. 402, 245-250 (2005).

4) K. Nishimura, S. Kim, L. Zhang, T. A. Cross, *Biochemistry.* **41**, 13170-13177 (2002). 5) N. Uekama, T. Aoki, T. Maruoka, S. Kurisu, A. Hatakeyama, S. Yamaguchi, M. Okada, H. Yagisawa, K. Nishimura*, S. Tuzi*, *Biochim. Biophys. Acta* 1788, 2575-2583 (2009).
6) M. Yagi-Utsumi, K. Kato, and K. Nishimura*, *PlosONE* 11, 0146405 (1-10) (2016).

7) T. Asakura, T. Ohota, S. Kametani, K. Okushita, K. Yazawa, Y. Nishiyama, K. Nishimura, A. Aoki, F. Suzuki, H. Kaji, A. Ulrich, M. Williamson, *Macromolecules* 48, 28-36 (2015).
8) N. Ousaka, F. Mamiya, Y. Iwata, K. Nishimura, and E. Yashima, *Angew. Chem. Int. Ed.* 56, 791-795 (2017)

小林 玄器(准教授) KOBAYASHI, Genki

2006年金沢大学工学部卒業、 2008年東京工業大学総合理 工学研究科修士課程修了、 2010年博士課程修了、博士 (理学)。2010年同産学官連携 研究員、2011年神奈川大学 助教、2013年分子科学研究所 特任准教授(若手独立フェ ロー)を経て、2018年4月より 現職。2012年10月~2016年 3月科学技術振興機構さき がけ「新物質科学と元素戦略」 さきがけ研究者兼任。

TEL: 0564-55-7440

mail: gkobayashi@ims.ac.jp

2006 Kanazawa University

2008 Tokyo Institute of Technology, Master of Engineering

2010 Tokyo Institute of Technology, Doctor of Science

Postdoctoral Fellow, Tokyo Institute of Technology

2011 Assistant Professor, Kanagawa University

2012 PRESTO Researcher (Additional post), Japan Science and Technology Agency (- 2016)

2013 Research Associate Professor, Institute for Molecular Science

2018 Associate Professor, Institute for Molecular Sciece

(Keywords)
 Solid State Ionics,
 Oxyhydride,
 Battery

■分子機能研究部門 Molecular Functions

次世代電気化学デバイスの 創出に向けた新物質探索 Materials Science for Creation of Novel Electrochemical Devices

持続可能なエネルギー社会の実現に向け、電気化学 反応を利用した蓄電・発電の重要性が高まっています。 現在、リチウム二次電池や燃料電池を越える次世代の エネルギーデバイスを目指した研究が盛んにおこなわ れていますが、実現には、既存の研究開発と並行して新 物質創製に基づいた新規デバイスを開発する試みが 必要になります。これまでH⁺, O²⁻, Li⁺, Na⁺などのイオン を利用した燃料電池や蓄電池の開発が行われてきまし たが、新たなイオンを電荷担体とする電極や固体電解 質材料が出現すると、全く新しい作動原理をもつエネル ギーデバイスの可能性が拓かれます。我々のグループ では、水素のアニオンであるヒドリド(H⁻)に着目し、H⁻ 導電性を有する固体電解質や電極材料の探索をおこ なっています。

一般的に、イオンの動き易さを決める代表的な指標 として、価数、大きさ、潰れやすさ(分極率)があり、1価 で適度なイオン半径を持ち、分極率の大きなH-は高速 イオン導電に適しています。また、H-は、二次電池への 応用が検討されているMgと同程度の酸化還元電位 (E° = -2.25 V vs. SHE)を有することから、H-を電荷 担体に利用し、H⁻の酸化還元電位を活かした蓄電・発 電反応を構築することができれば、高エネルギー密度 が得られると期待できます。また、1価のイオンであり ならH⁻からH⁺への二電子反応が可能な唯一のイオン であり、様々な化学反応に応用できる可能性もあります。 最近、我々の研究グループでは、H-とO2-が結晶格子内 に共存する酸水素化物という物質群を対象に物質探索 を行い、H-導電性の固体電解質として機能する新物質 La2-x-ySrx+yLiH1-x+yO3-y(以下LSLHO)の開発に成功し ました。さらに、LSLHOを固体電解質に用いることで H-を電荷担体とする電池反応を世界に先駆けて見 いだし、H-導電を利用した電気化学デバイスの開発可 能性を示しました。我々は、この研究結果を基に、H-が 結晶内を高速で拡散するH-超イオン導電体などの新 物質の探索やH-導電を活用した新型デバイスの開発 をおこなうと同時に、H-のイオン導電機構の解明など、 H-導電体に関する学理を構築する研究に挑んでいき ます。

Chemical energy conversion/storage using electrochemical devices such as fuel cells and batteries will become increasingly important for future sustainable societies. Recently, many research for advanced electrochemical devices beyond Li secondary batteries and fuel cells have been actively carried out worldwide. A breakthrough of core materials used as electrodes and electrolytes is required to open up the frontier in the electrochemical devices. An injection of new ion conduction phenomenon is one of the dominant candidates for the creation of novel battery systems. We focus on hydride ions (H-) as a candidate of charge carriers for energy devices. In this context, we aim to synthesize new materials possessing hydride ion (H⁻) conductivity, and to develop a novel battery system utilizing both the H⁻ conduction phenomenon and the H⁻/H₂ redox reaction.

Crystal structures of La_{2-x-y}Sr_{x+y}LiH_{1-x+y}O_{3-y} (x = 0, y = 0, 1, 2). The coordination environment around lithium ions continuously changes with a change in the O/H⁻ ratio. The four axial sites of the Li-anion octahedra (anion sites in Li-anion planes perpendicular *s*-axis) prefer to be occupied by H⁻.

参考文献

 G. Kobayashi, Y. Hinuma, S. Matsuoka, A. Watanabe,
 I. Muhammad, M. Hirayama, M. Yonemura, T. Kamiyama,
 I. Tanaka and R. Kanno, "Pure H⁻ Conduction in Oxyhydrides," *Science* 351, 1314-1317 (2016).

 G. Kobayashi, Y. Irii, F. Matsumoto, A. Ito, Y. Ohsawa,
 S. Yamamoto, Y. Cui, J.-Y. Son and Y. Sato, "Improving Cycling Performance of Li[Li_{0.2}Ni_{0.18}CO_{0.03}Mn_{0.58}]O₂ through Combination of Al₂O₃-based Surface Modification and Stepwise Pre-cycling," *J. Power Sources* 303, 250-256 (2016).
 G. Kobayashi, A. Yamada, S. Nishimura, R. Kanno, Y. Kobayashi, S. Seki, Y. Ohno, H. Miyashiro, "Shift of Redox Potential and Kinetics in Li_x(Mn_yFe_{1-y})PO₄," *J. Power Sources* 189(1), 397-401 (2009).

 G. Kobayashi, S. Nishimura, M.-S. Park, R. Kanno, M. Yashima, T. Ida and A. Yamada, "Isolation of Solid Solution Phases in Size-Controlled Li_xFePO₄ at Room Temperature," *Adv. Funct. Mater.* **19**(3), 395-403 (2009).
 S. Nishimura, G.Kobayashi, K. Ohoyama, R. Kanno, M. Yashima and A. Yamada, "Experimental visualization of lithium diffusion in Li_xFePO₄," *Nature Mater.* **7**, 707-711 (2008).

飯野 亮太 (教授) IINO, Ryota

1995年京都大学工学部卒、 1997年京都大学大学院工学 研究科修了、2000年名古屋大 学大学院理学研究科単位取 得退学、2003年博士(理学)。 2000年~2005年科学技術振 興機構研究員、2005年~2011 年大阪大学産業科学研究所 特任助手、助手、助教、2011年~ 2014年東京大学大学院工学研 究淋講師、准教授を経て2014年 6月より現職。

mail: iino@ims.ac.jp

1995 B.E. Kyoto University

1997 M.E. Kyoto University

2003 Ph.D. Nagoya University

2000 Research Associate, Japan Science and Technology Cooperation

- 2002 Research Associate, Japan Science and Technology Agency
- 2005 Specially-appointed Assistant Professor, Osaka University
- 2006 Assistant Professor, Osaka University
- 2011 Lecturer, The University of Tokyo
- 2013 Associate Professor, The University of Tokyo
- 2014 Professor, Okazaki Institute for Integrative Bioscience

Professor, Institute for Molecular Science

Professor, The Graduate University for Advanced Studies

Keywords>

Molecular Machines,

Protein Engineering,

Single-Molecule Analysis

生体分子機械の作動原理、設計原理の徹底的理解 Operation and Design Principles of Biological Molecular Machines

生命活動は進化の過程で創られた分子機械が支えて います¹⁾。タンパク質でできた生体分子機械は、2016年 ノーベル化学賞で話題となった人工分子機械よりも遥 かに優れた機能を発揮しますが、人工分子機械のように 人間が自在に設計することはまだできていません。私た ちは、個々の生体分子機械の動きや形を観る、天然にな い生体分子機械を創る方法を開発する、といったアプ ローチで、その作動原理と設計原理を明らかにします。

1.生体分子機械に学ぶ:私たちは生体分子機械の作動原理を解明します。生体分子機械の代表例は、入力エネルギーを一方向性の運動に変換する分子モーターです。 私たちはリニア分子モーター²⁾⁻⁴⁾や回転分子モー ター^{5),6)}を研究しています。例えば、バイオ燃料の原料となる結晶性多糖を分解するキチナーゼ、セルラーゼは^{2),3)} 一方向に運動するリニア分子モーターです。駆動力は ATPではなくレールである多糖の分解のエネルギーで、 ミオシン、キネシン等の従来のリニア分子モーターとは 作動原理が全く異なります。また回転分子モーター V-ATPasel^{5),6)}、力学的回転を介してATPの化学エネ ルギーとイオンの電気化学ポテンシャルを相互変換す ることができます。これらは人工分子機械には達成でき ていない高度な機能です。

2.生体分子機械を創る:私たちは天然に存在しない 新しい生体分子機械を創ることにチャレンジしていま す。生体分子機械には基本構造がよく似たものが存在し ます。AAA+ファミリーはその代表例で⁷¹、V-ATPaseも このファミリーに属します⁸¹。特筆すべきは、似た構造な のに機能は多彩な点です。計算科学による合理設計や 網羅的変異体作製を駆使し、V-ATPase、セルラーゼ、キ チナーゼなどを積極的に改造して多彩な機能を発揮す る設計原理を理解します^{91,10}。

3.生体分子機械の機能を調べる、形を調べる:私たち は1分子計測法を生体分子機械の機能解析に駆使し ます^{11),12}。プラズモニックナノプローブを用いた高速・高 位置決定精度1分子計測の開発を行っています^{4)-6),11),13)}。 また、生体分子機械の形を調べるX線結晶構造解析も 行っています。

参考文献

lino R, et al., *BBA General Subjects* 1862: 241-252 (2018)
 Nakamura A, et al., *Phys. Chem. Chem. Phys.* 20: 3010-3018 (2018)

3) Nakamura A, et al., *J. Biol. Chem.* 291: 22404-22413 (2016)
4) Isojima H, Iino R, et al., *Nat. Chem. Biol.* 12: 290-297 (2016)
5) Ueno H, Minagawa Y, et al., *J. Biol. Chem.* 289: 31212-31223 (2014)

 Minagawa Y, Ueno H, et al., J. Biol. Chem. 2013 288: 32700-32707 (2013) Activity of life is supported by molecular machines made of proteins¹⁾. Protein molecular machines are far superior to synthetic molecular machines in many aspects. We elucidate operation and design principles of protein molecular machines.

<u>1. Understand biomolecular machines</u>: Molecular motors are representative of the protein molecular machines. Molecular motors generate mechanical forces and torques driving unidirectional motions from the energy of chemical reaction or the potential energy. We are studying linear²⁾⁻⁴⁾ and rotary motors^{5), 6)}. Especially, we focus on new molecular motors such as chitinase²⁾, cellulase³⁾, and V-ATPase^{5), 6)}.

<u>2. Engineer biomolecular machines</u>: Many biomolecular machines have similar structures, implying same evolutional origin. AAA+ family is one of the representatives⁷). Rotary molecular motor V-ATPase also belongs to this family⁸). Interestingly, the AAA+ molecular machines show wide variety of functions. We engineer non-natural biomolecular machines with new functions^{9), 10}).

<u>3. Investigate functions and structures of</u> <u>biomolecular machines</u>: Our study is based on state-of-the-art single-molecule techniques^{11), 12)}. We are developing new single-molecule methods such as high-speed and high-localization precision measurements with plasmonic nanoprobes^{4)-6), 11), 13)}. We also determine crystal structures of biomolecular machines by X-ray crystallography.

Protein molecular machines

7) lino R, Noji H. *Curr. Opin. Struct. Biol.* 23: 229-234 (2013)
 8) lino R, et al., *Curr. Opin. Struct. Biol.* 31: 49-56 (2015)
 9) Baba M, et al., *PNAS* 113: 11214-11219 (2016)
 10) Yukawa A, et al., *Biochemistry* 54: 472–480 (2015)
 11) Watanabe R, et al., *Nat. Commun.* 4: 1631 (2013)
 12) Uchihashi T, lino R, et al., *Science* 333: 755-758 (2011)
 13) Enoki S, et al., *Anal. Chem.* 87: 2079-2086 (2015)

青野 重利 (教授) AONO, Shigetoshi

1982年東京工業大学工学部 卒、1987年同大学大学院理工 学研究科博士課程修了、工学 博士。日本学術振興会特別 研究員、ジョージア大学博士 研究員、東京工業大学助手、 北陸先端科学技術大学院 大学助教授を経て2002年5月 より現職。

TEL: 0564-59-5575

FAX: 0564-59-5576

mail: aono@ims.ac.jp

1982 B.S. Tokyo Institute of Technology

1987 Ph.D. Tokyo Institute of Technology

1988 Postdoctoral Fellow, University of Georgia

1989 Assistant Professor, Tokyo Institute of Technology

1994 Assistant Professor, Japan Advanced Institute of Science and Technology

2002 Professor, Institute for Molecular Science

> Professor, Okazaki Institute for Integrative Bioscience (-2018)

Professor, The Graduate University for Advanced Studies

2018 Professor, Exploratory Research Center on Life and Living Systems

Keywords>
Bioinorganic Chemistry,
Metalloproteins,
Sensor Protein

新規な機能を有する金属タンパク質の構造と機能 Bioinorganic Chemistry of Metalloproteins Responsible for Signal Transduction

遷移金属イオンや遷移金属含有補欠分子族を活性中 心とする金属タンパク質は、生物の物質代謝やエネル ギー代謝において中心的な役割を果たしているのみな らず、細胞内情報伝達にも深く関わっていることが知ら れています。生物は様々な外部環境変化に対応し、生体 内の恒常性を維持するための精緻なシステムを有して います。このようなシステムは、外部環境の変化を感知 するためのセンシングシステムと、感知した情報に対応 して細胞内の恒常性維持に必要な応答反応に関与する レスポンスレギュレーターシステムから構成されていま す。このようなシステムの中には、遷移金属イオンが関 与しているシステムも多く存在しています。代表的な例 として、酸素、一酸化炭素、一酸化窒素等の気体分子の ような、単純タンパク質では応答不可能なシグナルに対 する応答システムがあります。これらのシステムでは、分 子中に遷移金属イオンを含む金属タンパク質がセン サー分子として機能することにより、遺伝子発現、走化 性制御、セカンドメッセンジャー分子の合成・分解を介し た代謝制御などの様々な生理機能制御に関与していま す。また、遷移金属イオンそのものがシグナル分子とし て機能することにより、生理機能制御に必須な遷移金属 イオンの細胞内濃度を適正に維持するために必要な分 子マシナリー(金属イオン取込み・排出システム、細胞内 金属輸送システム等)の発現制御、金属タンパク質の生 合成制御など、様々な生理機能が制御されています。

我々は、構造生物学、遺伝子工学、分子生物学、および 各種分光学的な実験手法を駆使することにより、シグナル センシングやシグナル伝達に関与する新規な金属タン パク質の構造機能相関解明、および細胞内遷移金属 イオンの恒常性維持の分子機構解明を目的として研究 を進めています。

参考文献

1) "Protein Dynamics of the Sensor Protein HemAT as Probed by Time-Resolved Step-Scan FTIR Spectroscopy," A. Pavlou, H. Yoshimura, S. Aono, E. Pinakoulaki, *Biophys. J.* **114**, 584-591 (2018).

2) "Probing the role of the heme distal and proximal environment in ligand dynamics in the signal transducer protein HemAT by time-resolved step-scan FTIR and resonance Raman spectroscopy," A. Pavlou, A. Loullis, H. Yoshimura, S. Aono, E. Pinakoulaki, *Biochemistry*, **56**, 5309-5317 (2017).

3) "Structural characterization of heme environmental mutants of CgHmuT that shuttles heme molecules to heme transporters," N. Muraki, C. Kitatsugi, M. Ogura, T. Uchida, K. Ishimori, S. Aono, *Int. J. Mol. Sci.* **17**, 829 (10pages) (2016).

Transition metal ions and metalloproteins play crucial roles in signal transduction processes in addition to their traditional roles in energy and substance metabolisms. Many responses to metals occur transcriptionally or post-transcriptionally. The metal-responsive transcription factors control the expression of genes encoding proteins responsible for metal homeostasis in cells including metal ions uptake/efflux, intracellular metal trafficking, and biogenesis of metalloproteins. Metal-responsive signal transduction pathways emanating from metal sensing at the cell membrane are also responsible for biological regulation in response to metals. Metal-based sensor proteins are utilized to sense external signals that cannot be sensed by simple sensor proteins without any prosthetic group, in which transition metal ions or metal-containing prosthetic groups act as the active center of signal sensing.

My research interests are foucused on the elucidation of the structural and functional relationships for metal-dependent proteins working in biological signal-transduction systems including metal-based sensor proteins, transition metal ion-sensing transcriptional regulators, and protein machineries responsible for metal ions homeostasis in both prokaryotes and eukaryotes.

X-ray crystal structure of N-terminal domain of HtaA responsible for heme uptake in *C. glutamicum* (left) and a close-up view of its heme-binding pocket (right).

4) "Structural Basis for Heme Recognition by HmuT Responsible for Heme Transport to the Heme Transporter in Corynebacterium glutamicum," N. Muraki, S. Aono, *Chem. Lett.* **45**, 24-26 (2015).

 "Heme-binding properties of HupD functioning as a substrate-binding protein in a heme-uptake ABC-transporter system in Listeria monocytogenes," Y. Okamoto, H.Sawai, M. Ogura, T. Uchida, K. Ishimori, T. Hayashi, S. Aono, *Bull. Chem. Soc. Jpn.* 87, 1140-1146 (2014).

6) "The Dos family of globin-related sensors using PAS domains to accommodate haem acting as the active site for sensing external signals," S. Aono, *Adv. Microbial Physiol.* **63**, 273-327 (2013).

加藤晃一(教授) KATO, Koichi

1986年東京大学薬学部卒、 1991年同大学院薬学系研究 科博士課程修了、薬学博士。 東京大学助手・講師、名古屋市 立大学大学院薬学研究科教授 を経て2008年4月より現職。 TEL: 0564-59-5225

- FAX: 0564-59-5225
- mail: kkatonmr@ims.ac.jp

1986	B.S.	The	Universit	v of
	Toky	C		<u> </u>

- 1991 Ph.D. The University of Tokyo
- 1991 Assistant Professor, The University of Tokyo
- 1997 Lecturer, The University of Tokyo
- 2000 Professor, Nagoya City University
- 2008 Professor, Okazaki Institute for Integrative Bioscience (-2018)

Professor, Institute for Molecular Science

Professor, The Graduate University for Advanced Studies

- 2013- Project Leader, JSPS Grant in Aid for Scientific Research on Innovative Areas "Dynamical ordering of biomolecular systems for creation of integrated functions" (-2018)
- 2018 Professor, Exploratory Research Center on Life and Living Systems

<Keywords> Biomolecule, Dynamical Ordering, NMR

■生体分子機能研究部門 Biomolecular Functions

生命分子システムの動的秩序形成と 高次機能発現の仕組みの探求 Dynamical Ordering of Biomolecular Systems for Creation of Integrated Functions

生命現象の特質は、システムを構成する多数の分子 素子がダイナミックな離合集散を通じて秩序構造を 形成し、外的環境との相互作用を行いつつ、自律的に 時間発展していくことにあります。前世紀末期に勃興 したオミクスアプローチは生命体を構成する分子素 子に関する情報の網羅的集積を実現しました。しかし ながら、それらの生命素子が自律的に柔軟かつロバスト な高次秩序を形成するメカニズムを理解することは、 これからの生命科学の重要な課題です。私たちは、生 物学・化学・物理学の分野横断的な研究を通じて、内 的複雑性を秘めた生命分子素子が動的な秩序を形成 して高次機能を発現する仕組みを分子科学の観点か ら解き明かすことを目指しています。

さらに、生命分子システムのデザインルールを取り 入れた人工自己組織化システムの創生に資すること を目的とした研究も行っています。生命超分子集合体 は、外部環境の変動や超分子集合体間のコミュニケー ションを通じて時空間的発展を遂げています。生命分子 システムの有するこうした特徴の本質を深く理解し、 それを積極的に人工超分子系の設計に取り入れるこ とは、分子科学におけるパラダイムシフトをもたらす ものと考えています。

Living systems are characterized as dynamic processes of assembly and disassembly of various biomolecules that are self-organized, interacting with the external environment. The omics-based approaches developed in recent decades have provided comprehensive information regarding biomolecules as parts of living organisms. However, fundamental questions still remain unsolved as to how these biomolecules are ordered autonomously to form flexible and robust systems. Biomolecules with complicated, flexible structures are selforganized through weak interactions giving rise to supramolecular complexes that adopt their own dynamic, asymmetric architectures. These processes are coupled with expression of integrated functions in the biomolecular systems.

Toward an integrative understanding of the principles behind the biomolecular ordering processes, we conduct multidisciplinary approaches based on detailed analyses of dynamic structures and interactions of biomolecules at atomic level, in conjunction with the methodologies of molecular and cellular biology along with synthetic and computational technique.

Formation of supramolecular machinery through dynamic assembly and disassembly of biomolecules

参考文献

1) Sakae, Y., Satoh, T., Yagi, H., Yanaka, S., Yamaguchi, T., Isoda, Y., Iida, S., Okamoto, Y. and Kato, K., "Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa," *Sci. Rep.* **7**, 13780 (2017).

2) Yanaka, S., Yamazaki, T., Yogo, R., Noda, M., Uchiyama, S., Yagi, H. and Kato, K., "NMR detection of semi-specific antibody interactions in serum environments," *Molecules* **22**, 1619 (2017).

 Satoh, T., Song, C., Zhu, T., Toshimori, T., Murata, K., Hayashi, Y., Kamikubo, H., Uchihashi, T. and Kato, K., "Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT," *Sci. Rep.* 7, 12142 (2017).
 Yan, G., Yamaguchi, T., Suzuki, T., Yanaka, S., Sato, S., Fujita, M. and Kato, K., "Hyper-assembly of self-assembled glycoclusters mediated by specific carbohydrate–carbohydrate interactions," *Chem. Asian J.* **12**, 968-972 (2017).

5) Suzuki, T., Kajino, M., Yanaka, S., Zhu, T., Yagi, H., Satoh, T., Yamaguchi, T. and Kato, K., "Conformational analysis of a high-mannose-type oligosaccharide displaying glucosyl determinant recognised by molecular chaperones using NMR-validated molecular dynamics simulation," *ChemBioChem* **18**, 396-410 (2017).

6) Yagi-Utsumi, M., Yamaguchi, Y., Uekusa, Y. and Kato, K., "NMR characterization of the conformations, dynamics, and interactions of glycosphingolipids," *NMR in Glycoscience and Glycotechnology (K.Kato and T.Peters ed.)*, RSC Publishing (Cambridge), pp161-178 (2017).

栗原 顕輔(特任准教授) KURIHARA, Kensuke

2005年東京大学教養学部卒 業、2010年同大学大学院総合 文化研究科博士課程修了、博 士(学術)。東京大学大学院 総合文化研究科技術補佐員、 東京大学複雑生命システム 動態研究教育拠点特任研究員 を経て、2014年5月より現職。 TEL: 0564-59-5579

mail: kkurihara@ims.ac.jp

2005 B.S. The University of Tokyo

2010 Ph.D. The University of Tokyo

Postdoctoral Fellow, The University of Tokyo

- 2013 Postdoctoral Fellow, Research & Education Platform for Dynamics Living States, The University of Tokyo
- 2014 Research Associate Professor, Institute for Molecular Science

Research Associate Professor, Okazaki Institute for Integrative Bioscience (OKAZAKI ORION Project) (-2018)

2018 Research Associate Professor, Exploratory Research Center on Life and Living Systems

<Keywords>
 Artificial Cell,
 Origin of Life,
 Vesicle

柔らかい分子集合体で創る人工細胞 A Supramolecular Chemical Approach to the Construction of Artificial Cells

「生命とは何か?」「生命はどのように誕生したのか?」 誰もが一度は抱いたことがある疑問だと思います。生命 と非生命を分ける最低限の要素は、自己と環境を分ける 境界、生命の個性を記述する情報、内部で行われる代謝 反応を促進させる触媒です。私たちのグループでは、分 子を有機合成し、分子集合体から生命の最小単位であ る細胞を構築することを行っています。人工細胞の境界 として広く用いられている分子集合体がベシクル(リポ ソーム)です。ベシクルは、両親媒性分子が疎水性部位 を向かい合わせて2分子膜を形成し、それが中空状に なった構造をとります。

私たちは以前、菅原正研究室(現・神奈川大学)のもと、 ベシクル内部に鋳型DNA、プライマー、DNA重合酵素 などを封入し、ポリメラーゼ連鎖反応させて、ベシクル 内部でDNAを増幅させました。この増幅DNAを内包す るベシクルに、ベシクル膜分子の原料である膜分子前駆 体分子を添加すると、膜内に含まれる酸性触媒分子か膜分 子前駆体を加水分解し膜分子が生産されます。ベシクルは 生産された膜分子を取り込み肥大し、最終的に分裂しま した(ベシクルの自己生産ダイナミクス)。このベシクル 型人工細胞は、内部の情報分子の複製と境界の自己生産 が連動する初めての人工細胞として注目を集めました。

細胞がその個体数を増やし個体を維持していくため には、連動する3要素だけでなく、環境による影響を受け にくい性質(ロバスト性)も備えていることが重要です。 本研究室では、以下のように各要素に摂動を与えること で、ベシクル型人工細胞が最適な状態へと自発的に再 構築される協奏システムの構築を目指しています。これ は、生命がどのように誕生したのかを説明するシステム として有用です。加えて、周りの環境変化に応じて、最適 な状態をベシクル自身が見つけ出すので、ロバスト性を もつ微小反応場としての応用も期待されます。

参考文献

1) L. Sheng and K. Kurihara, "Transformation of oil droplets into giant vesicles," *Chem. Commun.***52**, 7786-7789 (2016).

 2) 栗原顕輔 "分子が関わる人工細胞から生命を考える" 季刊 生命誌 88 (2016).

3) K. Kurihara, Y. Okura, M. Matsuo, T. Toyota, K. Suzuki and T. Sugawara, "A recursive vesicle-based model protocell with a primitive model cell cycle" *Nature Commun.*, **6**, 8352 (2015).

 Kurihara K., Tamura M., Shohda K., Toyota T., Suzuki K. & Sugawara T. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. *Nature Chem.* **3**, 775-781 (2011). Exploring the boundary between living and non-living matter is one of the most challenging problems for contemporary scientists. To understand the cell, which is considered the smallest unit of life, a plausible strategy is to synthesize an artificial cell by using a supramolecular chemical approach, because simple molecular assemblies at one time evolved to create the simple cell on prebiotic earth. As shown in figure below, the key elements of a cell are the compartment, information, and a catalyst (i.e., metabolism). We have attempted to construct a chemically based artificial cell endowed with these three elements.

In our laboratory, we attempted to construct two artificial cells by using giant vesicles (GVs) as the compartment. One, developed in collaboration with the Sugawara group (Kanagawa Univ.), is an artificial cell that can proliferate from generation to generation. Now, we have constructed a recursive vesicular artificial cell system with proliferation cycles. By using the vesicular transport system, the second generation GVs, which contain no PCR reagents after self-reproduction, can be replenished by fusing them with conveyer GVs bearing the PCR reagents by changing the pH of the dispersion. After the PCR reagents are replenished, the GV can self-reproduce again. This system could lead to an evolvable artificial cellular system. The other artificial cell contains a catalyst-producing system. The GV system can generate catalysts and membrane molecules by transforming their respective precursors, thereby facilitating the proliferation of the GVs with the produced catalyst.

We are now tackling the creation of artificial cells that mimic cellular dynamics, such as cytoskeleton formation, protein production in the cell.

Artificial cells generate new artificial cells adapted to the environment.

古谷祐詞(准教授) FURUTANI, Yuji

1999年京都大学理学部卒業、 2001年同大学大学院理学 研究科修士、2004年博士課程 修了、博士(理学)。2003年~ 2005年学術振興会特別研究 員、2006年~2008年名古屋 工業大学大学院工学研究科 助手、助教を経て、2009年3月 より現職。

TEL: 0564-55-7330 mail: furutani@ims.ac.jp

1999 B.S. Kyoto University 2004 Ph.D. Kyoto University 2003 JSPS Research Fellow 2004 JSPS Postdoctoral Fellow

2006 Assistant Professor, Nagoya Institute of Technology

2009 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

2011 JST-PRESTO Researcher (concurrent post) (-2015)

(Keywords)
Infrared Spectroscopy,
 Membrane Protein,
 Ion Channel

イオンチャネル、輸送体、受容体などの分子機構研究 Investigation of Molecular Mechanisms of

Channels, Transporters and Receptors

細胞の内外をつなぐ膜タンパク質

細胞膜には、外界からの情報を受容するための膜受容 体、イオンを透過するイオンチャネル、分子などを輸送 する輸送体等の膜タンパク質が存在します。我々の網膜 の視細胞には、ロドブシンという光受容体がはたらいて います。また、生体電気信号を発生する神経細胞には、 ナトリウムチャネルやカリウムチャネルがはたらいて います。病院などで問題となる多剤耐性菌では、様々 な薬物を細胞外に排出する多剤排出輸送体がはたら いています。また、イオンポンプは膜電位やプロトン濃 度勾配を形成し、その電気化学的勾配を利用して、 ATP合成酵素は生体エネルギー物質であるATPを生 産します。このように膜タンパク質は細胞の生存に欠 かせない精巧な分子機械としてはたらいています。

これらの膜タンパク質の機能発現がどのような分 子メカニズムでなされているのかを明らかにするため には、原子レベルでのタンパク質構造だけでなく、 イオンや分子との相互作用やタンパク質の構造変化 に関する情報も必要です。イオンの配位構造や分子内、 分子間水素結合構造などの情報を、赤外差スペクトル 法を活用することで明らかにし、膜タンパク質の機能 発現機構に迫ることを目的に研究を進めています。 一例として、カリウムチャネルの赤外差スペクトルを 図に示します。イオン選択フィルターを形成する力 ルボニル基とカリウムイオンもしくはナトリウムイ オンとの相互作用の違いが差スペクトルの変化とし て表れています。この赤外差スペクトルを解析するこ とにより、カリウムイオンとナトリウムイオンの配位構 造の違いや親和性の違いなどが明らかとなります。 参老文献

1) Y. Furutani, H. Shimizu, Y. Asai, T. Fukuda, S.Oiki and H. Kandori, "ATR-FTIR Spectroscopy Revealed the Different Vibrational Modes of the Selectivity Filter Interacting with K⁺ and Na⁺ in the Open and Collapsed Conformations of the KcsA Potassium Channel", *J. Phys. Chem. Lett.* **3**, 3806-10 (2012).

2) Y. Furutani, T. Murata and H. Kandori, "Sodium or Lithium Ion-Binding-Induced Structural Changes in the K-ring of V-ATPase from Enterococcus hirae Revealed by ATR-FTIR Spectroscopy", *J. Am. Chem. Soc.* **133**, 2860-3 (2011).

3) A. Inaguma, H. Tsukamoto, H. E. Kato, T. Kimura, T. Ishizuka, S. Oishi, H. Yawo, O. Nureki and Y. Furutani, "Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2", J. Biol. Chem. 290, 11623-34 (2015).

4) H. Tsukamoto, I-S. Chen, Y. Kubo and Y. Furutani, "A Ciliary Opsin in the Brain of a Marine Annelid Zooplankton is ultraviolet-Sensitive and the Sensitivity is Tuned by a Single Amino Acid Residue", *J. Biol. Chem.* **292**, 12971-80 (2017).

Membrane proteins function as checkpoints between the inside and outside of the cell

In the cell membrane, there are various kinds of membrane proteins, such as membrane receptors sensing external stimuli, ion channels transmitting ions, and transporters uptaking/releasing specific molecules. For example, visual cells in our retina possess light receptors called rhodopsin. Bioelectrical signals are generated in nerve cells by sodium and potassium channels. Multidrug-resistant bacteria, which could be problematic in hospital, possess multidrug efflux transporter expelling various drugs. Ion pumps make membrane potential and/or proton gradient, whose electrochemical potential is utilized for synthesizing ATP molecules as universal bioenergetic substance. Like these, membrane proteins are inevitable for cellular survival and function with elaborate molecular machineries.

In addition to three-dimensional protein structures in atomic resolution, precise coordination structures of ions, intramolecular and intermolecular hydrogen-bonding networks, and structural changes of protein in action should be analyzed for elucidating molecular mechanisms underlying functionality of membrane proteins. We apply infrared difference spectroscopy to obtain these pieces of structural information and explore molecular mechanisms of membrane proteins. For instance, infrared difference spectra of a potassium channel are shown in the figure below. The spectra reflect difference in interactions of potassium and sodium ions with carbonyl groups constructing the selectivity filter. From analysis of these spectra, coordination structures of potassium and sodium ions in the selectivity filter and their affinities can be elucidated.

(top) X-ray crystal structure of a potassium channel, KcsA. (bottom) The ion-exchange-induced difference infrared spectra of KcsA with different potassium-ion concentration. The amide I bands are mainly originated from the carbonyl groups of the selectivity filter of KcsA.

魚住泰広(教授) UOZUMI, Yasuhiro

1984年北海道大学薬学部卒、 1990年薬学博士。日本学術 振興会特別研究員、北海道 大学教務職員、同助手、米国 コロンビア大学研究員、京 都大学講師、名古屋市立大 学教授を経て2000年より現 職。理化学研究所アクセル 研究プロジェクトリーダー。 TEL: 0564-59-5571 FAX: 0564-59-5574

mail: uo@ims.ac.jp

1984 B.S. Hokkaido University
1990 Ph.D. Hokkaido University
1988 JSPS fellow
1988 Research Associate,
Hokkaido University
1990 Assistant Professor,
Hokkaido University
1994 Research Associate,
Columbia University
1995 Lecturer, Kyoto University
1997 Professor, Nagoya City
University
2000 Professor, Institute for
Molecular Science
Professor, The Graduate
University for Advanced
Studies
2002- Professor (adhoc), Kyoto
2005 University
2007- Research team leader.
2017 RIKEN
2010- Professor (adhoc), Tokyo
2012 Institute of Technology
2018- ACCEL Project Leader,
2019 RIKEN
2014- Distinguished Professor,
Three George University
2003- Research Project Leader,
Three George University 2003- Research Project Leader, 2008 JST CREST Project on
Green Catalysis
2008- Research Project Leader,
2012 NEDO Project on Green
Chemical Processes
2011 - Deputy Research Project
2016 Leader, JST CREST
Project on Element
Strategy
2014- Research Project Leader,
2010 ISLACCEL Project on

Hyper-Active Catalysis

Keywords

Transition Metal Catalysis, Green Chemistry, **Organic Synthesis**

■錯体触媒研究部門 Complex Catalysis 有機分子変換を駆動・制御する 新しい反応システムの構築

Development of Heterogeneous Catalysis toward Ideal Chemical Processes

人類が化学を体系づける遥か太古の昔から生命は精 緻な化学分子変換を実現しています。それら生命化学反 応は中性、常圧、常温、水中で高い選択性を伴って進行し ます。我々は理想的な化学反応システムの創出を目指し、 生命化学工程を司る酵素の構造的模倣ではなく、化学 反応の駆動原理、駆動システムを生命から学びとること を出発点としました。すなわち酵素はしばしば遷移金属 活性中心を持ち、タンパクからなる疎水性ポケットの中 で化学反応を駆動します。そこで我々は両親媒性高分子 や両親媒性分子集合体が水中でこそ創りだす疎水性反 応場を利用し、そこに遷移金属触媒(錯体触媒やナノ粒 子触媒)を埋め込むことで完全水系媒体中での精密な 有機分子変換工程を達成しています。中でも高分子マト リクス内への固定化と水中での触媒反応実施を前提に 設計された独自の光学活性配位子ーパラジウム錯体を 導入した両親媒性高分子触媒は、アリル位置換反応や Suzuki反応において高い選択性を水中不均一条件下 で実現しています。また高分子固定化白金ナノ触媒では アルコール類の酸化反応が触媒的に水中で酸素ガスの みで実現されます。

有機分子は元来「油」であり水には馴染みません。 水中で高分子触媒を用いて有機化学反応を実施すると、 疎水性有機分子は自ずから高分子マトリクス内に入り 込んで行き高濃度状態で触媒の近傍に集まり、高効率 で触媒反応が駆動されます。すなわち外部からのエネル ギーなどに依らず、分子が持つ性質そのものを駆動力と する反応システムです。

参考文献

1) Takao Osako, Kaoru Torii, Shuichi Hirata, Yasuhiro Uozumi "Chemoselective Continuous-Flow Hydrogenation of Aldehydes Catalyzed by Platinum Nanoparticles Dispersed in an Amphiphilic Resin" ACS Catal. 7, 7371-7377 (2017). 2) Go Hamasaka, Tsubasa Muto, Yoshimichi Andoh, Kazushi Fujimoto, Kenichi Kato, Masaki Takata, Susumu Okazaki, Yasuhiro Uozumi "Detailed Structural Analysis of a Self-Assembled Vesicular Amphiphilic NCN-Pincer Palladium Complex by Wide-Angle X-Ray Scattering and Molecular Dynamics Calculations" Chem. Eur. J. 23, 1291-1298 (2017). 3) Heeyoel Baek, Maki Minakawa, Yoichi M. A. Yamada, Jin Wook Han, Yasuhiro Uozumi "In-Water and Neat Batch and Continuous-Flow Direct Esteri cation and Transesteri cation by a Porous Polymeric Acid Catalyst" Sci. Rep. 6, 25925 (2016). 4) Yoichi M. A. Yamada, Yoshinari Yuyama, Takuma Sato, Shigenori Fujikawa, Yasuhiro Uozumi "A Palladium-Nanoparticle and Silicon-Nanowire-Array Hybrid: A Platform for Catalytic Heterogeneous Reactions" Angew. Chem. Int. Ed. 53, 127-131 (2014). 5) Yoichi M. A. Yamada, Shaheen M. Sarkar, Yasuhiro Uozumi

"Amphiphilic Self-Assembled Polymeric Copper Catalyst to Parts

Our research interests lie in the development of transition metal-catalyzed reaction systems toward ideal (highly efficient, selective, green, safe, simple, etc.) organic transformation processes. In one active area of investigation, we are developing the heterogeneous aquacatalytic systems. Various types of catalytic organic molecular transformations, e.g. carbon-carbon bond forming cross-coupling, carbon-heteroatom bond forming reaction, aerobic alcohol oxidation, etc., were achieved in water under heterogeneous conditions by using amphiphilic polymer-supported transition metal complexes and nanoparticles, where self-concentrating behavior of hydrophobic organic substrates inside the amphiphilic polymer matrix played a key role to realize high reaction performance in water.

per Million Levels: Click Chemistry," J. Am. Chem. Soc. 134, 9285-9290 (2012).

6) Yoichi M. A. Yamada, Shaheen M. Sarkar, Yasuhiro Uozumi, "Self-Assembled Poly(imidazole-palladium): Highly Active, Reusable Catalyst at Parts per Million to Parts per Billion Levels," J. Am. Chem. Soc. 134, 3190-3198 (2012).

7) Shaheen M. Sarkar, Yoichi M. A. Yamada, Yasuhiro Uozumi, "A highly Active and Reusable Self-Assembled Poly (Imidazole/Palladium) Catalyst: Allylic Arylation/Alkenylation," Angew. Chem. Int. Ed. 50, 9437-9441 (2011).

8) Go Hamasaka, Tsubasa Muto, Yasuhiro Uozumi, "Moleular-Architecture-Based Administration of Catalysis in Water: Self-Assembly of an Amphiphilic Palladium Pincer Complex," Angew. Chem. Int. Ed. 50, 4876-4878 (2011).

9) Yasuhiro Uozumi, Yutaka Matsuura, Takayasu Arakawa, Yoichi M. A. Yamada Asymmetric Suzuki-Miyaura Coupling in Water with a Chiral Palladium Catalyst Supported on an Amphiphilic Resin Angew. Chem. Int. Ed. 48, 2708-2710 (2009). 10) Yoichi M. A. Yamada, Takayasu Arakawa, Heiko Hocke, Yasuhiro Uozumi, "A Nanoplatinum Catalyst for Aerobic Oxidation of Alcohols in Water," Angew. Chem. Int. Ed. 46, 704-706 (2007).

11) Yasuhiro Uozumi, Yoichi M. A. Yamada, Tomohiko Beppu, Naoshi Fukuyama, Masaharu Ueno and Takehiko Kitamori, "Instantaneous Carbon-Carbon Bond Formation Using a Microchannel Reactor with a Catalytic Membrane," J. Am. Chem. Soc. 128, 15994-15995 (2006).

椴山 儀恵(准教授) MOMIYAMA, Norie

2000年名古屋大学工学部卒、 2005年シカゴ大学大学院化学 科博士課程修了Ph.D.。米国 ハーバード大学博士研究員 (Damon Runyon Cancer Research Foundation Post Doctoral Research Fellow)、 東北大学大学院理学研究科 助手、助教を経て2014年6月 より現職。

TEL: 0564-59-5531

mail: momiyama@ims.ac.jp

2000 B.S. Nagoya University

2005 Ph.D.The University of Chicago

2005 Postdoctoral Fellow, Harvard University

2006 Assistant Professor, Tohoku University

2014 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

⟨Keywords⟩ Organic Synthesis, Molecular Catalyst, Non-Covalent Interaction

■^{錯体触媒研究部門} Complex Catalysis キラル分子・キラル機能性物質の デザイン・合成・機能創出 Design, Synthesis, and Functionalization of Chiral Molecules

物質がその鏡像と重ね合わすことができない性質を 「キラリティ」といい、そのような性質をもつ分子を"キラ ル分子"と呼びます。「キラリティ」は、様々な物質の性質 を進展させる要素として知られています。物質にキラリ ティを組み込むことは、その機能の飛躍的な向上に繋 がり、夢の物質を創り出す第一歩となります。私たちの グループでは、キラル機能性物質開発への応用展開を 最終目標に、現在、その基盤づくりに取り組んでいます。 独自のキラル分子をデザインし、その合成に向けて独自 の合成手法を開発し、独自に合成したキラル分子の新た な機能の創出をめざして、日々研究を進めています。

私たちはこれまでに、複数の水素結合供与部位を有 するキラル分子触媒の開発に成功しました。このキラル 分子は、複数あるコンフォメーションのうち、ひとつの 特有のコンフォメーションのみをとります。さらに、この キラル分子が、キラルな小分子を供給する分子性触媒 として機能することを見出しました。この結果は、数千か ら数万の分子量を有する酵素の機能が、分子量が数百 程度の人工キラル分子により簡易的に実現できること を示唆しています。

私たちは、キラル分子をデザインし、開発した反応を 駆使して、新たな可能性を秘めたキラル分子の創成に挑 戦しています。様々な解析手法を用いて、合成した分子 の未知の振る舞いを解明し、分子に特有の性質を見出 すことで、新たな機能を有するキラル物質を創り出して いきたいと考えています。

参考文献

1) N.Momiyama, H.Tabuse, H.Noda, M.Yamanaka, T.Fujinami, K.Yamanishi, A.Izumiseki, K.Funayama, F.Egawa, S.Okada, H.Adachi, M.Terada, "Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-,Diastereo-,and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid" *J. Am. Chem. Soc.* 2016, **138**,11353-11359.

 N. Momiyama, H. Okamoto, J. Kikuchi, T. Korenaga, M. Terada, "Perfluorinated Aryls in the Design of Chiral Brønsted Acid Catalysts: Catalysis of Enantioselective [4+2] Cycloadditions and Ene- Reactions of Imines with Alkenes by Chiral Mono-Phosphoric Acids with Perfluoroaryls," ACS Catal. 6, 1198-1204 (2016).

3) N. Momiyama, K. Funayama, H. Noda, M. Yamanaka, N. Akasaka, S. Ishida, T. wamoto, M. Terada, "Hydrogen Bonds-Enabled Design of a C₁-Symmetric Chiral Brønsted Acid Catalyst," ACS Catal. 6, 949-956 (2016).

4) N. Momiyama, T. Narumi, M. Terada, "Design of a Brønsted Acid with Two Different Acidic Sites: Synthesis and Application of Aryl Phosphinic Acid-Phosphoric Acid as a Brønsted Acid "Chirality" is a special property that a substance cannot be superimposed with its mirror image, and a molecule with such a property is called "chiral molecule." "Chirality" is known as a factor that advances the properties of various substances. Incorporating chirality into substances leads to a dramatic improvement in their function and is the first step to create dream substances. We are working on creating the fundamental research with the ultimate goal of application to the development of chiral functional materials. We are designing our own chiral molecule, developing our own synthetic method toward its synthesis, and aiming at creating new functions of uniquely synthesized chiral molecules.

We have successfully developed a chiral molecular catalyst with multiple hydrogen bond donor sites. This chiral molecule takes only one specific conformation out of multiple conformations. In addition, we found that this chiral molecule functions as a molecular catalyst to supply chiral small molecules. This result suggests that the function of enzymes with molecular weights of several thousands to tens of thousands can be easily realized by artificial chiral molecules with molecular weights of several hundreds.

We believe that our challenges create chiral molecules, which have new possibilities by designing chiral molecules and making use of the developed reactions. We are planning to elucidate the unknown behavior of synthesized molecules by using various analytical methods and to create chiral substances with new functions by finding properties peculiar to molecules.

X-ray structure of our recent development

Catalyst," Chem. Commun. 51, 16976-16979 (2015).

5) N. Momiyama, T. Konno, Y. Furiya, T. Iwamoto, M. Terada, "Design of Chiral Bis-phosphoric Acid Catalyst Derived from (R)-3,3'-Di(2-hydroxy-3-arylphenyl) binaphthol: Catalytic Enantioselective Diels-Alder Reaction of α , β -Unsaturated Aldehydes with Amidodienes," *J. Am. Chem. Soc.* **133**, 19294-19297 (2011).

6) N. Momiyama, M. W. Kanan, D. R. Liu, "Synthesis of Acyclic α,β-Unsaturated Ketones *via* Pd(II)-Catalyzed Intermolecular Reaction of Alkynamides and Alkenes," *J. Am. Chem. Soc.* **129**, 2230-2231 (2007).

7) N. Momiyama, H. Yamamoto, "Brønsted Acid Catalysis of Achiral Enamine for Regio- and Enantioselective Nitroso Aldol Synthesis," *J. Am. Chem. Soc.* **127**, 1080-1081 (2005).

正岡 重行(准教授) MASAOKA, Shigeyuki

1999年同志社大学工学部卒、 2004年京都大学大学院工学 研究科博士課程修了、工学 博士。リバブール大学博士 研究員、九州大学助手/助教 を経て2011年2月より現職。 2009年10月より、科学技術 振興機構さきがけ「光エネル ギーと物質変換J研究員(併任)。 TEL: 0564-59-5587

FAX: 0564-59-5589

mail: masaoka@ims.ac.jp

1999 B.S. Doshisha University

2004 Ph.D. Kyoto University
2002 JSPS Reserch Fellow
(DC2)
2004 Research Assistant
(Postdoc), University of
Liverpool, England
2005 Research Associate,
Kyushu University
2007 Assistant Professor,
Kyushu University
2009 JST PRESTO Researcher
(-2013)
2011 Associate Professor,
Institute for Molecular

Associate Professor, The Graduate University for Advanced Studies

Science

⟨Keywords⟩
Metal Complex,
Water Oxidation,
Artificial Photosynthesis

一錯体物性研究部門 Functional Coordination Chemistry

人工光合成システムの構築を志向した 金属錯体化学

Development of Functional Metal Complexes for Artificial Photosynthesis

太陽光エネルギーを利用して、水素やアルコール等の 貯蔵可能なクリーン燃料を作り出す。"人工光合成"と呼 ばれるこれらの反応は、実用化されれば世界のエネル ギー問題が一気に解決する可能性のある究極のエネル ギー製造技術と考えられています。我々の研究グループ では、生体機能の中心的な役割を果たしている"金属錯 体"に注目し、人工光合成を実現するための基盤づくりに 取り組んでいます。

最近、我々の研究グループでは、人工光合成技術の実現に必要となる、(1)天然の光合成系に匹敵する高い活性を持ち、(2)耐久性が高く、(3)安価な金属元素により構築される、という3つの条件を満たす酸素発生触媒の開発に世界で初めて成功しました。

天然の光合成反応では、植物中に存在する光化学系 と呼ばれるタンパク質中に存在する酸素発生錯体 (Oxygen Evolving Complex, OEC)が良好な酸素発生 触媒として機能することが知られています。しかし、OEC は生体中でのみ安定な構造であり、そのまま取り出して 用いることは困難です。そこで我々は、OECの構造の どの部分がその高い酸素発生能と関連しているかを考察 することで、新たな触媒が開発できるのではないかと 考えました。このコンセプトを「植物に学ぶ触媒デザイン」 と呼んでいます。上記の「植物に学ぶ触媒デザイン」に 基づき、我々は、安価な鉄イオンを有する人工触媒(鉄五 核錯体)を用いた酸素発生反応の開発に成功しました。 鉄五核錯体は、「多核構造」と「近接した水分子の結合 サイト」という酸素発生反応を促進するための2つの特徴 を有しています。この鉄五核錯体の触媒能について調査 したところ、その酸素発生速度は、既存の鉄錯体触媒と比 較して1,000倍以上大きく、OECをも上回ることが明ら かになりました。この成果は、エネルギー・環境問題の解 決へとつながる人工光合成技術の発展に向けた大きな 一歩です。

参考文献

 M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata, S. Masaoka, "A pentanuclear iron catalyst designed for water oxidation," *Nature* 530, 465 (2016).
 M. Yoshida, M. Kondo, S. Torii, K. Sakai, S. Masaoka, "Oxygen Evolution Catalysed by a Mononuclear Ruthenium Complex bearing Pendant -SO₃⁻ Groups," *Angew. Chem. Int. Ed.* 54, 7981 (2015).

 M. Yoshida, M. Kondo, T. Nakamura, K. Sakai, S. Masaoka, "Three Distinct Redox States of an Oxo-Bridged Dinuclear Ruthenium Complex," *Angew. Chem. Int. Ed.* 53, 11519 (2014).

Artificial photosynthesis is a solar energy conversion technology that mimics natural photosynthesis, and considered a next big breakthrough in the research field. Recently, we have succeeded in constructing a highly active catalyst for the water oxidation reaction, which is considered a bottleneck in artificial photosynthesis. Inspired by the catalyst in the natural photosynthetic system, we have employed a pentanuclear iron complex as a catalyst because the complex includes key elements to achieve efficient catalysis: (i) multinuclear structures to facilitate multi-electron transfer and (ii) adjacent catalytic active sites separated to promote intramolecular O-O bond formation. The reaction rate of the complex is more than 1,000 times greater than the values of other iron-based catalysts and considerably greater than that of the natural system.

(a) Structure of pentanuclear iron catalyst

(b) Features of pentanuclear iron catalyst

1. Multinuclear structure

(a) Structure and (b) features of pentanuclear iron catalyst

秋山 修志(教授) AKIYAMA, Shuji

1997年京都大学工学部卒、 1999年京都大学大学院工学 研究科修士課程修了、2002年 京都大学大学院工学研究科 分子工学専攻博士課程修了、 博士(工学)。日本学術振興 会特別研究員、理化学研究所 基礎科学特別研究員、科学 技術振興機構さきがけ「生命 現象と計測分析」研究員(専 任)、名古屋大学大学院理学 研究科講師/准教授を経て 2012年4月より現職。2013年4 月より協奏分子システム研究 センター長。2008年~現在 理化学研究所播磨研究所客 員研究員併任。

TEL/FAX: 0564-55-7363 mail: akiyamas@ims.ac.jp

1997 B. Tech. Kyoto Univ
1999 M. Tech. Kyoto Univ
2002 Ph.D. Kyoto Univ
2001 JSPS Research Fellow
2002 JSPS Postdoctoral Research Fellow
2003 RIKEN Special Postdoctoral Researcher
2005 PRESTO Researcher of JST
2008 Junior Associate Professor, Nagoya University
2011 Associate Professor, Nagoya University
2012 Professor, Institute for Molecular Science
Professor, The Graduate University for Advanced Studies
2013 Director, Research

2013 Director, Research Center of Integrative Molecular Systems (Keywords)

Circadian Clock,

Cyanobacteria,

Temperature Compensation

■階層分子システム解析研究部門 Trans-Hierarchical Molecular Systems 生物時計タンパク質が24時間周期の リズムを奏でる仕組みを解き明かす Origins of 24 Hour Period in Cyanobacterial Clock System

「生物(体内)時計」という言葉を意識するのはどのよう なときでしょうか。渡航や帰国後に頻発する眠気、だるさ、 夜間の覚醒…、これら時差ボケの症状は、我々が生物 時計の奏でる24時間周期のリズムのもとで生活している ことの証です。私たちの研究グループでは――生命が 地球の自転周期(24時間)をどのようにしてその内に取り 込んだのか――それを分子科学的に解明するという壮大 な研究テーマに挑戦しています。

シアノバクテリアの生物時計は、3種の時計タンパク質 (KaiA、KaiB、KaiC)とATPを混ぜ合わせることで試験管 内に再構成され(Kaiタンパク質時計)、24時間を正確に 刻むことができます。一方、時を刻む仕組みの分子科学 的理解は進んでいません¹⁾。その一つは「安定した遅さ」 の根源で、既存概念の積み上げでは、タンパク質分子と いう素材で24時間という「遅いダイナミクス」が実現され ている理由を説明できません。もう一つの謎が周期の温 度補償性です。これは生物時計に普遍的に見いだされる 特徴で、時計の発振周期が温度の影響をほとんど受けま せん。遅い反応は大きな活性化エネルギーを有し、温度 の上昇に従って著しく加速されるのが一般的です。生物 時計のからくりに迫るためには、「遅いダイナミクス」と 「温度補償性」という一見排他的な2つの性質を同時に 説明しなければならないのです¹。

私たちの研究グループでは、Kaiタンパク質時計の生 化学的な活性測定²はもとより、X線結晶構造解析²や X線溶液散乱³⁾⁻⁵⁵を相補的に利用した動的構造解析、蛍 光等による分子動態計測⁴⁰や同調実験、計算機を用いた 実験データのシミュレーション²¹などを行うことで、 分子時計の実態解明に取り組んでいます。このような 研究活動を通じて、多くの皆さんに生物、化学、物理、制御 工学、計算科学を巻き込んだタンパク質時計研究のフロン ティアを体験して頂ければと思います⁶。

参考文献

1) S. Akiyama, "Structural and dynamic aspects of protein clocks: How can they be so slow and stable?" *CMLS* **69**, 2147-2160 (2012).

2) J. Abe et al., "Atomic-scale Origins of Slowness in the Cyanobacterial Circadian Clock" *Science* 349, 312-316 (2015).
3) S. Akiyama et al., "Assembly and Disassembly Dynamics of the Cyanobacterial Periodosome" *Mol. Cell* 29, 703-716 (2008).

4) Y. Murayama et al., "Tracking and Visualizing the Circadian Ticking of the Cyanobacterial Clock Protein KaiC in Solution" *EMBO J.* **30**, 68-78 (2011).

5) A. Mukaiyama et al., "A protocol for preparing nucleotidefree KaiC monomer" *BIOPHYSICS* **11**, 79-84 (2015). 6) 秋山 修志, "時間生物学と放射光科学の接点", 放射光 (2016). Circadian (approximately 24 h) clocks are endogenous time-keeping systems encapsulated in living cells, enabling organisms to adapt to daily fluctuation of exogenous environments on the Earth.These time-keeping systems, found ubiquitously from prokaryotes to eukaryotes, share the three characteristics. First, the circadian rhythmicity of the clocks persists even without any external cues (self-sustainability). Second, the period is little dependent on ambient temperature (temperature compensation). Third, the phase of the clock can be reset by external stimuli such as lightning, humidity, or temperature so as to be synchronized to the external phase (synchronization).

KaiC, a core protein of the circadian clock in cyanobacteria, undergoes rhythmic structural changes over approximately 24 h in the presence of KaiA and KaiB (Kai oscillator). This slow dynamics spanning a wide range of both temporal and spatial scales is not well understood, and is central to a fundamental question: What determines the temperature-compensated 24 h period?¹⁾ The Kai oscillator reconstitutable in vitro is advantageous for studying its dynamic structure through a complementary usage of both X-ray crystallography²⁾ and solution scattering³⁾⁻⁵⁾, its transient response and synchronization by using physicochemical techniques⁴⁾, and its molecular motion through a collaborative work with computational groups²). Our mission is to explore the frontier in molecular science of the cyanobacterial circadian clock from many perspectives⁶⁾.

Three Major Characteristics 1. Self-sustained 24 hour oscillation

- 自称的に約24時間の周期での細胞
- 2. Constant period (24 h) over wide range of temperature (Temperature Compensation)
- 3. Synchronization (jet lag)

One of the major goals is to provide a model that simultaneously explains above three characteristics. 生物時計の研究における究植的理解とは、上記3つの特性を余すこと なく説明するモデルを構築することである。

Towards a Unified View of Temperature-compensated 24 h Period in Biological Clock System.

古賀 信康(准教授) KOGA, Nobuyasu

2001年神戸大学理学部卒、 2006年神戸大学大学院自然 科学研究科修了、理学博士。 神戸大学博士研究員、京都大 学博士研究員、日本学術振興 会海外特別研究員、ワシントン 大学博士研究員を経て2014年 4月より現職。

TEL: 0564-55-7379

mail: nkoga@ims.ac.jp

2001 B.S. Kobe University

2006 Ph.D. Kobe University

2003 JSPS Predoctoral Research Fellow

2006 Postdoctoral Fellow, Kobe University

2007 Postdoctoral Fellow, Kyoto Universtiy

> JSPS Postdoctoral Fellow for Research Abroad

2009 Postdoctoral Fellow, University of Washington

2014 Associate Professor, Institute for Molecular Science

Associate Professor, The Graduate University for Advanced Studies

2018 Associate Professor, Exploratory Research Center on Life and Living Systems

$\langle Keywords \rangle$

Structural Biology, Protein Folding, Protein Design for Structure and Function 階層分子システム解析研究部門 Trans-Hierarchical Molecular Systems

タンパク質分子の新規デザイン De novo Design of Protein Molecule

タンパク質分子は、アミノ酸配列に従ってほどけた紐の ような状態から自発的に折りたたまり特異的な3次元立 体構造を形成した後に、その3次元立体構造に基づき機 能を発現することで、生命システムにおけるパーツとして 様々な生命現象を生み出しています。現在私達が見てい る自然界のタンパク質の姿は、自然が何十億年という 時間をかけて精巧に創り上げた、いわば"完成品"であり、 それらを解析するのみではタンパク質分子の動作メカ ニズムの本質を明らかにすることは困難です。そこで 私達は、立体構造形成や機能発現に関する様々な仮説を 立て、それらを基にタンパク質分子を計算機上でデザイン し、そのデザインしたタンパク質分子が実際にどのように 振る舞うのかを生化学実験によって調べるというアプ ローチで研究を行っています。

私達は「アミノ酸配列はどのような原理により折りたた み後の構造を決定しているのか?」という問題に取り組ん できました。この問題が解明されれば、アミノ酸配列に基 づいて折りたたむ立体構造を予測することも、またその 逆に、望みの機能を発現する立体構造に折りたたむアミノ 酸配列を自在にデザインすることも可能になります。これ までの研究において、アミノ酸配列の詳細というよりも、 αヘリックス、βストランド、ループの長さや形状といった 主鎖構造が3次構造の決定に重要であることを発見し、 これらの発見を基にタンパク質デザイン技術を開発する ことで、様々なタンパク質構造のデザインに成功しました。 今後は、このデザイン技術を発展させることで、望みの 機能を持つタンパク質をデザインする技術の確立を目指 します。 Protein molecules spontaneously fold into unique three-dimensional structures specified by their amino acid sequences from random coils to carry out their functions. Many protein studies have been performed by analyzing naturally occurring proteins. However, it is difficult to reach fundamental working principles of protein molecules only by analyzing naturally occurring proteins, since they evolved in their particular environments spending billions of years. In our lab, we explore the principles by computationally designing protein molecules completely from scratch and experimentally assessing how they behave.

Protein design holds promise for applications ranging from catalysis to therapeutics. There has been considerable recent progress in computationally designing proteins with new functions. Many protein design studies have been conducted using naturally occurring protein structures as design scaffolds. However, since naturally occurring proteins have evolutionally optimized their structures for their functions, implementing new functions into the structures of naturally occurring proteins is difficult for most of cases. Rational methods for building any arbitrary protein structures completely from scratch provide us opportunities for creating new functional proteins. In our lab, we tackle to establish theories and technologies for designing any arbitrary protein structures precisely from scratch. The established methods will open up an avenue of rational design for novel functional proteins that will contribute to industry and therapeutics.

参考文献

1) Sarel J. Fleishman, Andrew Leaver-Fay, Jacob E. Corn, Eva-Maria Strauch, Sagar D. Khare, <u>Nobuyasu</u> <u>Koga</u>, Justin Ashworth, Paul Murphy, Florian Richter, Gordon Lemmon, Jens Meiler, and David Baker, RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite, *PLoS ONE* **6**(6), 1-10 (2011).

 <u>Nobuyasu Koga</u>, Rie Tatsumi-Koga, Gaohua Liu, Rong Xiao, Thomas B. Acton, Gaetano T. Montelione and David Baker, Principles for designing ideal protein structures, *Nature* **491**(7423), 222-227 (2012).

3) Yu-Ru Lin, <u>Nobuyasu Koga</u>, Rie Tatsumi-Koga, Gaohua Liu, Amanda F. Clouser, Gaetano T. Montelione, David Baker, Control over overall shape and size in de novo designed proteins, *Proc. Natl. Acad. Sci. USA* **112**(40), E5478-5485 (2015).

山本 浩史(教授) YAMAMOTO, Hiroshi

1993年東京大学理学部化学 科卒業、1998年同大学大学院 理学系研究科博士課程修了、 博士(理学)、1998年学習院 大学理学部物理学科助手、 1999年理化学研究所基礎科 学特別研究員、2000年同研 究員、2007年同専任研究員 を経て、2012年4月より現職。 東京工業大学総合理工学研 究科特任教授・東北大学理 学部物理学科教授も兼任中。 TEL: 0564-55-7334 FAX: 0564-55-7325 mail: yhiroshi@ims.ac.jp

1993 B.S. The University of Tokyo

1998 Ph.D. The University of Tokyo

1998 Research Associate, Gakushuin University

1999 Special postdoctoral fellow, RIKEN

2000 Research Scientist, RIKEN

2007 Senior Research Scientist, RIKEN

2012 Professor, Institute for Molecular Science

> Professor, The Graduate University for Advanced Studies

2012 Visiting Professor, Tokyo Institute of Technology

2015 Visiting Professor, Tohoku University

Keywords>

Molecular Conductors, Organic Superconducting Transistors,

Supramolecular Nanowires

分子を使った新しいエレクトロニクスを開拓する Open up Future Electronics by Organic Molecules

新しいエレクトロニクスの担い手としてπ電子が注 目を集めています。軽くて曲げられるトランジスタとし て最近盛んに研究されている有機トランジスタ (Organic Field Effect Transistor = OFET)や、 2010年にノーベル賞を受賞したグラフェンなどがその 代表例と言えるでしょう。我々の研究室では、π電子に よる新しいエレクトロニクスの創成を目指して、これま でとは違った独創的なデバイスを提案・実現していこ うと研究に取り組んでいます。現在主に取り組んでい るのは、π電子エレクトロニクスの中でも非常に特異 な性質をもつ「強相関π電子」を使ったトランジスタの 開発です。強相関電子というのは、電子間のクーロン 相互作用が強く働き、通常の伝導電子とは異なった振 る舞いをする電子系のことで、ほんの少し電子濃度を 増やしたり減らしたりするだけで、急に電子が固まって 絶縁体になったり、急に流れ出して金属になったりします。 不思議なことに、YBa2Cu3O7-- などの銅酸化物高温 超伝導体の伝導電子もまた、この強相関電子に属する ことが分かっています。そしてFET構造の仕組みを利 用して有機物界面の「強相関電子」の濃度を変化させ てやると、上に述べたような現象が実際に起こって、 絶縁体を金属や超伝導にスイッチ(相転移)させるこ とが出来ます。我々は世界で初めて、こうした相転移 をOFET界面において観測することに成功し、デバイ スのスイッチング性能を飛躍的に向上させることに成 功しました。また最近は、超伝導のON/OFFを光で制 御したり、歪みの効果で超伝導転移を制御したりする デバイスの開発も達成しています。このようなデバイ スは将来量子コンピューターの中で使われる可能性 があるほか、その動作様式を丹念に調べることによっ て、まだ分かってないことの多い強相関電子系超伝導 の発現機構解明のための糸口を与えてくれることが 期待されています。

Organic molecules are attracting recent attention as new ingredients of electronic circuits. Their functionalities have been developed considerably, but are still to be explored and advanced. Our group focuses on a development of organic electronics in the next era by providing new mechanism and concepts of the device operation and fabrication. For example, an electronic phase transition is utilized for the ON/OFF switching of our field-effect-transistor (FET). This special FET is called an organic Mott-FET, where the conduction electrons in the organic semiconductor are solidified at the OFF state because of Coulomb repulsion among carriers. However, these solidified electrons can be melted by applying a gate voltage, and show an insulator-to-metal transition so-called Mott-transition to be switched to the ON state. Because of this phase transition, a large response of the device can be achieved, resulting in the highest device mobility ever observed for organic FETs. At the same time, Mott-transition is known for its relevance to superconductivity. Not only in organic materials but also in inorganic materials such as cuprates, Mott-transition is frequently associated with superconducting phase at low temperature. Indeed, our organic FET shows an electric-field-induced superconducting transition at low temperature.

Light-induced superconductivity at an organic interface. Self-assembled monolayer (SAM) of photochromic molecule can react with UV light to form electric field across the interface. This electric field invites excess carriers that induces superconductivity from Mott-insulating state.

参考文献

1) H. M. Yamamoto, M. Suda, and Y. Kawasugi "Organic phase-transition transistor with strongly correlated electrons" *Jpn. J. Appl. Phys.*, **57**, 03EA02 (2018).

2) M. Suda, R. Kato, and H. M. Yamamoto "Light-induced superconductivity using a photo-active electric double layer" *Science*, **347**, 743-746 (2015).

 H. M. Yamamoto, M. Nakano, M. Suda, Y. Iwasa, M. Kawasaki and R. Kato "A strained organic field-effect transistor with a gate-tunable superconducting channel" *Nature Commun.* 4, 2379/1–2379/7 (2013).

鈴木 敏泰(准教授) SUZUKI, Toshiyasu

1985年名古屋大学理学部 卒、1987年名古屋大学理学 研究科前期課程修了、1992 年カリフォルニア大学サンタ バーバラ校博士課程修了、 Ph.D.。分子科学研究所助手、 1995年NEC基礎研究所を 経て1998年1月より現職。 TEL: 0564-59-5530 FAX: 0564-59-5532 mail: toshy@ims.ac.jp

1985 B.S. Nagoya University

1992 Ph.D. University of California, Santa Barbara

1992 Assistant Professor, Institute for Molecular Science

1998 Associate Professor, Institute for Molecular Science

Associate Professor, The Graduate University for Advanced Studies

(Keywords) Organic Synthesis, Graphene Molecule, Organic Semiconductor ■機能分子システム創成研究部門 Functional Molecular Systems

有機物で光・電子材料を作る Synthesis of Organic Electronic and Optoelectronic Materials

基本的な有機物であるベンゼンは、炭素6個と水素 6個からできています。六角形の炭素リングの上を6個 の電子が回っており、これによって分子が安定に存在 できます。有機分子の中を自由に動き回る電子をパイ 電子といい、光、電気、磁気的な機能をもたせるために は必要不可欠です。この六角形を基本とした安定な化 合物を芳香族といいます。これまでに無数の芳香族 分子が知られていますが、我々が目標とするのは、Can フラーレンのようなスーパースター分子です。Cooはサッ カーボールと同じ形をした物質で、20個の六角形と 12個の五角形から構成されています。1990年に、炭素 電極のアーク放電という方法で大量合成されました。 C60には超電導、強磁性、n型半導体といった多くの優 れた機能が見つかっています。このCooのユニークな 性質は、その特異な構造に由来しているということが できます。

これまでにないユニークな機能性分子を開発する ためには、これまでにない特異な構造をもった分子を 設計する必要があります。我々は、六角形と八角形の 組み合わせで面白い分子ができないかと考え、[8] サーキュレン
りという分子を合成しました。中心の八角 形の周りを六角形が囲んでおり、ポテトチップスのよう なサドル型の構造をしています。この分子は、有機p型 半導体として機能することがわかっています。最近、シ クロパラフェニレンという複数のベンゼンが環状につ ながった分子が注目されています。これはカーボンナ ノチューブの最少単位として知られ、ナノリングと呼ば れています。我々はシクロパラフェニレンに光および 電子的な機能を与えることを目的として、カルバゾール 4個からなるナノリングを開発しました2)。また、有機n 型半導体として、完全にフッ素化したルブレン分子の 合成も行っています3)。

Benzene is a hexagonal molecule that consists of six carbons and six hydrogens. Six electrons circulate around the carbon ring, which stabilizes the molecule. These π electrons are necessary for organic materials to show photonic, electronic, and magnetic properties. Benzene derivatives with some hexagons are called aromatic compounds. We would like to synthesize unique aromatic molecules such as C₆₀ fullerene. C₆₀ resembles a soccer ball with twenty hexagons and twelve pentagons. It was extracted from carbon soot and isolated in 1990. Researchers found that C₆₀ works as superconductors, ferromagnets, and n-type semiconductors. These outstanding properties come from its unusual structure.

To make such unique organic materials, one should design molecules with extraordinary structures. We have synthesized [8]circulene that has an octagon surrounded by hexagons¹⁾. Its saddle shape looks like a potato chip. [8]circulene works as a p-type semiconductor. We also produced some carbon nanorings that contain four carbazole molecules²⁾. Recently, we reported fully fluorinated rubrene molecule as an n-type semiconductor³⁾.

参考文献

1) Y. Sakamoto and T. Suzuki, "Tetrabenzo[8]circulene: Aromatic Saddles from Negatively Curved Graphene," *J. Am. Chem. Soc.* **135**, 14074-14077 (2013).

2) Y. Kuroda, Y. Sakamoto, T. Suzuki, E. Kayahara and S. Yamago, "Tetracyclo(2,7-carbazole)s: Diatropicity and Paratropicity of Inner Regions of Nanohoops," *J. Org. Chem.* **81**, 3356-3363 (2016).

 Y. Sakamoto, T. Suzuki, "Perfluorinated and Half-Fluorinated Rubrenes: Synthesis and Crystal Packing Arrangements," *J. Org. Chem.* 82, 8111-8116 (2017).

Molecular structures of C60, [8]circulene, carbazole nanoring, and perfluororubrene.

岡本裕巳(教授) OKAMOTO, Hiromi

1983年東京大学理学部卒、 1985年同大学大学院理学系 研究科博士課程中退、1991年 理学博士。1985年分子科学研 究所助手、1990年東京大学理 学部助手、1993年同助教授を 経て、2000年11月より現職。 研究総主幹、およびメゾスコ ビック計測研究センター長。 TEL: 0564-55-7320 FAX: 0564-54-2254

mail: aho@ims.ac.jp

1983	B.S. The University of Tokyo	
1991	Ph.D. The University of Tokyo	
1985	Research Associate, Institute for Molecular Science	
1990	Research Associate, The University of Tokyo	
1993	Associate Professor, The University of Tokyo	
2000	Professor, Institute for Molecular Science	
	Professor, The Graduate University for Advanced Studies	
2012	Dean, School of Physical Sciences, The Graduate University for Advanced Studies (to 2014)	
2016	Deputy Director General	
2017	Director, Center for Mesoscopic Sciences	
	〈Keywords〉	
Near-Field Optical Microscopy,		
Plasmons,		
	Chirality	

参考文献

7b01511

■繊細計測研究部門 Supersensitive Measurements

新しい光学顕微鏡でナノ物質の励起状態と キラリティを探る

Exploring Excited States and Chirality of Nanomaterials with Novel Optical Microscopes

従来の光学顕微鏡では、光の波長(可視光で0.5 µm 程度)より小さい形を見ることができませんが、近接場 光学顕微鏡という新しい方法によってナノメートルの物 質の観察が可能になりました。ナノサイズ物質のカラー 写真(スペクトル情報)を撮ることができ、また100兆分 の1秒単位の極めて短い時間内に起きる変化を、刻一 刻、場所ごとに調べることもできます。私たちは、貴金属 でできたナノ物質で、物質の特性に深く関わる「波動 関数」がこの方法で観察できることも見いだしました。 更に、円偏光という螺旋の性質を持つ光で近接場計測を することで、キラリティ(右手と左手のように、鏡像の関 係にあるが同一ではない形を持つこと)の性質を、ナノ 物質について場所ごとに調べることもできるようになり ました。このようにナノ物質の新しい性質を光で調べ、 制御する基礎的な研究を行っています。

貴金属ナノ微粒子をある一定の構造で集合させて配 列構造を作ると、光を照射したときに、局所的に非常に 強い光(金属微粒子のない場合に比べて、最大数百万 倍)が発生する場合があると考えられています。通常の 光学顕微鏡ではこのような光の場を観察することはで きませんが、私達は近接場光学顕微鏡を用いて、発生し た強い光の場を、実際にイメージとして観察しました。 例えば微粒子が2個連結した構造では、粒子間の隙間に 強い光が発生しているのが観察され、これは理論による 予測に良く一致します。また、同じ近接場光学顕微鏡を 用いた実験で、ナノサイズの孔を通ってくる光が、孔に 金属板で蓋をすると、かえって強くなるという、奇妙な 現象を見いだしました。解析の結果、貴金属の微粒子が 光を集める特異な性質が、この現象に深く関わることが わかってきました。

1) H. Okamoto, T. Narushima, Y. Nishiyama, and K. Imura, "Local Optical Responses of Plasmon Resonances Visualised by Near-Field Optical Imaging," *Phys. Chem.*

2) S. Hashiyada, T. Narushima, and H. Okamoto,

"Imaging Chirality of Optical Fields near Achiral Metal

nanostructures Excited with Linearly Polarized Light,"

ACS Photon. 5, 1486-1492 (2018). DOI: 10.1021/acsphotonics.

3) K. Imura, K. Ueno, H. Misawa, and H. Okamoto,

"Anomalous Light Transmission from Plasmonic Capped

Nano-Apertures," Nano Lett. 11, 960-965 (2011).

Chem. Phys. 17, 6192-6206 (2015).

With the conventional optical microscope, we cannot observe shapes of matters smaller than the wavelength of light (~0.5 µm for visible light). Observation of nanomaterials became feasible with a new method of optical microscopy, called near-field optical microscopy. It enabled taking color photographs (i.e., spectral information) of nanomaterials. It also enabled observing dynamical behavior on the extremely short (10⁻¹⁴ s) timescale at each position on the nanomaterial. With this new microscopic method, we investigate fundamental characteristics of nanomaterials. We found that wave functions of noble metal nanostructures can be visualized. By adopting circularly polarized light, properties of chirality (non-superimposable feature of a matter on its mirror image) became accessible at each local position on nanomaterials.

We succeeded in visualizing the local field as an image with near-field optical microscopy. In the dimeric gold nanoparticles, strong optical field was observed at the interstitial site between the two particles. During the near-field measurement of gold nanodisk, we found a unique phenomenon that light coming through a nano-sized hole is enhanced when the hole is capped with a nanodisk. The result was interpreted as arising from the nature of noble metal particles to collect light.

Near-field optical images of various gold nanostructures. A: Single gold nanorod (length 540 nm). The amplitude of the wave function is visualized. B: Dimers of spherical gold nanoparticles (diameter 100 nm). Strong optical fields are observed in the interstitial sites. C: Island-like assembly of gold nanospheres (diameter 100 nm). Strong field is localized in the rim part. D: Chirality image of gold nanorectangle observed with circularly polarized light. Yellow and blue parts indicate opposite handedness of chirality. Although a rectangle is not chiral, strong local chirality is visualized in this image.

平等 拓範(准教授) TAIRA, Takunori

1983年福井大学卒、1985年福井 大学大学院修士課程修了、同年 三菱電機(株)LSI研究所研究員、 1989年福井大学工学部助手、 1998年2月より現職、東北大学 博士(工学)。1993年~1994年 文部省長期在外研究員、2005年 パリ第6大学客員教授、2010年 ジョゼフ・フーリエ大学客員教授、 2013年パリ高等化学学校客員 教授、2007年~2014年豊橋技術 科学大学客員教授、2004年平成 16年度文部科学大臣賞、2008年 (財)光産業技術振興協会第24回 櫻井健二郎氏記念賞、2010年米国 光学会フェロー、2012年国際光工 学会フェロー、2014年米国電気電 子学会フェロー。OSA, Council, Board of Meeting. TEL: 0564-55-7346 FAX: 0564-53-5727 mail: taira@ims.ac.jp

- 1983 B.A. Fukui University 1985 M.Sc. Fukui University
- 1996 Ph.D. Tohoku University
- 1985-Researcher:LSI Research and 1989 Development Laboratory, Mitsubishi Electric Corp.,
- 1989 Research Associate: Fukui University.
- 1993 Visiting Researcher: Ginzton Laboratory, Stanford University
- 1998 Associate Professor: National Institutes of Natural Sciences, Institute for Molecular Science
- 2006 Invited Professor: Pierre & Marie Curie University (Paris VI), Paris, France.
- 2007 Invited Professor, Toyohashi University of Technology
- 2011 Invited Professor, UniversityJoseph Fourier, Grenoble,France.
- 2013 Invited Professor, ENSCP-Chimie ParisTech, Paris, France.

<Keywords>

Solid-State Lasers, Nonlinear Optics, Micro Solid-State Photonics

マイクロ固体フォトニクスの研究 Micro Solid-State Photonics

光の波長と同程度のミクロンオーダーで材料の性質 を制御する事で光波を高度に制御する"マイクロ固体 フォトニクス"に関する研究を展開しています。マイクロ ドメイン制御(図1)で新たな光学機能が発現できる 事から、マイクロ共振器(1990年Nd:YVO4、1993年 Yb:YAG、1997年セラミックYAGなど)1)-5)による高 コヒーレント光発生、高輝度温度のジャイアントパルス 光発生(ジャイアントマイクロフォトニクス)、コヒーレン ス長に合せマイクロドメインの非線形分極を制御する擬 似位相整合(Quasi phase matching、QPM)⁶⁾による 非線形光学波長変換(1998年バルクPPMgLNなど)な どを展開してきました。そして、レーザー点火が望める ジャイアントパルス光発生、金属加工を可能とする高強 度光発生、アト秒が望めるモノサイクル中赤外光発生、 高分解能分光を可能とする狭線幅中赤外光発生"、高強 度ポータブルテラヘルツ光の発生・検出®などが望める ようになりました。興味深いことにマイクロチップレー ザーは、従来のメガワット出力レーザーで困難だった パルスギャップ領域(サブナノ秒からピコ秒)に直接アク セスでき(図2)、X線からTHz波までの広い波長域で高 輝度光の発生を可能とするなど(図3)、光科学のフロン ティアを開拓しています。

Fig. 1 The concept of micro solid-state photonics as micro-domain controlled materials/devices.

参考文献

1) T. Taira, A. Mukai, Y. Nozawa and T. Kobayashi, *Opt. Lett.* **16**, 1955-1957 (1991).

 2) 平等拓範, 日本学術振興会 光エレクトロニクス第130委員会編「光 エレクトロニクスとその応用」オーム社, pp. 177-189, pp. 189-222, pp. 247-266, pp. 289-314, pp. 422-442 (2011.5): レーザー学会編 「先端固体レーザー」オーム社, pp. 33-96, pp. 97-147 (2011.12).
 3) T. Taira, J. Saikawa, T. Kobayashi and R. L. Byer, *IEEE Journal* of Selected Topics in Quantum Electrons 3, 100-104 (1997).
 4) T. Taira, *IEEE J. Sel. Top. Quantum Electron.* 13, 798-809 (2007). *INVITED*

5) T. Taira, [*INVITED*], *Opt. Mater. Express* **1**, pp. 1040-1050 (2011) : D. G. Rowe, "OUT OF THE LAB: Lasers for engine ignition," *Nature photonics* **2**, 515-517 (2008): **OSA News Release** http://www.osa.org/en-us/about_osa/ newsroom/news_releases/2011/lasersparksrevolution/>, "Micro Solid-State Photonics," based on the micro domain structure and boundary controlled materials, opens new horizon in the laser science. The engineered materials of micro and/or microchip solid-state, ceramic and single-crystal, lasers can provide excellent spatial mode quality and narrow linewidths with enough power. High-brightness nature of these lasers has allowed efficient wavelength extension by nonlinear frequency conversion, UV to THz wave generation. Moreover, the quasi phase matching (QPM) is an attractive technique for compensating phase velocity dispersion in frequency conversion. The future may herald new photonics.

Giant pulse > 10 MW was obtained in 1064nm microchip lasers using micro-domain controlled materials. The world first laser ignited gasoline engine vehicle, giant-pulse UV (355 nm, 266 nm) and efficient VUV (118 nm) pulse generations have been successfully demonstrated. Also, few cycle mid-IR pulses for atto-second pulses are demonstrated by LA-PPMgLN. We have developed new theoretical models for the microdomain control of anisotropic laser ceramics.

Fig. 2 Pulse width gap region of giant pulse lasers.

Fig. 3 Extended wavelength by giant micro-photonics.

BBC News <http://www.bbc.co.uk/news/scienceenvironment-13160950>.

6) H. Ishizuki and T. Taira, "Half-joule output opticalparametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO₃," *Opt. Express* vol. **20**, no.18, pp. 20002-20010 (2012).

7) M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, *Phys. Chem. Chem. Phys.* **11**, pp. 6098-6106 (2009).

8) S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, "Ultrabright continuously tunable terahertz-wave generation at room temperature," *Scientific Reports* **4**:5045 (2014). DOI: 10. 1038 / srep 05045.

9) T. Taira, T. Y. Fan, and G. Huber, "Introduction to the Issue of Solid-State Lasers" *IEEE J. Sel. Top. Quantum Electron.* **21**, 0200303 (2015).

藤 貴夫(准教授) FUJI, Takao

1994年筑波大学基礎工学類 卒業、1999年同大学大学院 工学研究科修了博士(工学)、 1999年東京大学大学院理学 系研究科助手、2002年オース トリア・ウィーン工科大学客員 研究員(日本学術振興会海外 特別研究員)、2004年ドイツ・ マックスプランク量子光学研 究所客員研究員、2006年(独) 理化学研究所研究員、2008年 同研究所専任研究員を経て 2010年2月より現職。

- TEL: 0564-55-7339
- FAX: 0564-53-5727
- mail: fuji@ims.ac.jp
- 1994 B.S.Universityof Tsukuba
- 1999 Ph.D.University of Tsukuba
- 1999 Assistant Professor, The University of Tokyo
- 2002 JSPS Postdoctoral Fellowship for Research A b r o a d (Vien n a University of Technology) (until 2004)
- 2004 Guest Researcher, Max-Planck-Insitute of Quantum Optics
- 2006 Research Scientist, RIKEN
- 2008 Senior Scientist, RIKEN
- 2010 Associate Professor, Institute for Molecular Science

Associate Professor, The Graduate University for Advanced Studies

Keywords>

- Ultrafast Science,
- Laser Physics,
- Nonlinear Optics

超短光パルスの研究 Ultrafast Laser Science

光は電磁波の一種ですが、その波の形を実際に観測 するということは、容易ではありません。目に見える光 (可視光)の周波数は数百テラヘルツ(THz=10¹² Hz)で あり、その周期は1,2フェムト秒(fs=10⁻¹⁵ s)と、非常に高 速だからです。

藤グルーブにおいて、2013年に、光の波の振動する 様子を直接計測する新しい光技術を開発しました¹⁾⁻³⁾。 この光電場計測技術は、測定したい光波そのものを利 用して、光の波を計測できる技術です。実験において、数 フェムト秒の周期で振動する光電場を明瞭に観測するこ とができました。

現在、光ファイバーによる通信では、光の振幅や位相 の変調によって、情報をのせています。もし、光電場の 波形そのものに情報をのせた通信を行うことができれば、 今よりも3桁以上高速に通信ができるようになります。 そのような通信技術の実現において、藤グループで開 発された光電場の計測技術は極めて重要になると考え られます。

このように、藤グループでは、最先端の光の計測や制 御技術、特にフェムト秒やアト秒のような超高速に関す る技術を開発します⁴⁻⁶。 Light is electro-magnetic field, same as radio wave, however, the measurement of the waveform of light is not easy task even in the 21^{st} century. The difficulty comes from the extremely fast oscillation of the light wave. The oscillation frequency of light wave is the order of hundred terahertz (THz = 10^{12} Hz), in other words, the oscillation period of light wave is the order of femtosecond (fs = 10^{-15} s).

In 2013, we have developed a new method for the measurement of light wave. It is called FROG-CEP, frequency-resolved optical gating capable of carrier-envelope phase determination¹⁾⁻³⁾. Our method does not need attosecond pulses, even self-referencing is possible. The electric field oscillation of infrared light with the period of several femtoseconds was clearly measured with the method as is shown in the figure below.

Currently, amplitude modulation and phase modulation are common encoding techniques in optical communication. If we can encode information in the shape of the light wave itself, the communication speed becomes 3 orders of magnitude faster. We believe that our method, FROG-CEP, becomes very important to realize such communication technology.

We are developing such cutting edge technologies for ultrafast laser science ⁴⁾⁻⁶⁾.

参考文献

1) Y. Nomura, H. Shirai, and T. Fuji, "Frequency-resolved optical gating capable of carrier-envelope phase determination," *Nat. Commun.* **4**, 2820 (2013).

2) T. Fuji, Y. Nomura, and H. Shirai, "Generation and characterization of phase-stable sub-single-cycle pulses at 3000 cm⁻¹," *IEEE J. Sel. Top. Quantum Electron.* **21**, 8700612 (2015)

3) H Shirai, Y Nomura, T Fuji, "Self-referenced measurement of light waves," *Laser Photon. Rev.* 11, 1600244 (2017).
4) T. Fuji, H. Shirai, and Y. Nomura, "Ultrabroadband mid-infrared spectroscopy with four-wave difference frequency generation," *J. Opt.* 17, 094004 (2015), Highlight of 2015.

5) Y. Nomura, T. Fuji, "Generation of watt-class, sub-50 fs pulses through nonlinear spectral broadening within a thulium-doped fiber amplifier," *Opt. Express* **25**, 13691-13696 (2017).

6) T Fuji, H Shirai, Y Nomura, "Development and application of sub-cycle mid-infrared source based on laser filamentation," *Appl. Sci.* **7**, 857 (2017).

Infrared light waveforms measured with FROG-CEP. The phase difference between the two infrared pulses was clearly measured.

藤田 誠(卓越教授) FUJITA, Makoto

1980年千葉大学工学部卒。 1982年同工学研究科修士 課程修了。1987年東工大工 学博士。相模中央化学研究 所研究員、千葉大学助手、同 講師、同助教授、分子科学研 究所助教授、名古屋大学教 授を経て、2002年より東京 大学大学院工学系研究科 教授、2018年4月より現職を 兼任。

TEL: 0564-55-5580

mail: mfujita@ims.ac.jp

1980	BSc Chiba University
1982	MSc Chiba University
1982-	Researcher, Sagami
	Chemical Research
	Center.
1987	PhD Tokyo Institute of
	Technology
	Assist.Prof.toAssoc.Prof.
1997	Chiba University.
1997-	Assoc. Prof., Inst. for
1999	Molecular Science (IMS)
	Professor, Nagoya
2002	University.
2002-	Professor, The University
	of Tokyo
2018-	Distinguished Professor,
	Institute for Molecular Science

⟨Keywords⟩ Self-assembly, Nano-space, Coordination Chemistry

錯体化学に立脚した自己集合分子システム Self-assembling Molecular Systems Based on Coordination Chemistry

本研究室では、「金属配位による自己集合」をキー ワードに新しい物質と機能の創成に挑んでいます。 これまでに、適度な結合力をもち、結合形成に明確な 方向性と結合数を持つ配位結合(金属イオンと有機 分子の相互作用)を自己集合の駆動力として活用する ことで、人工系でありながら安定でかつ精密な3次元 構造が狙いどおりに構築できることを数多く提示してき ました。現在ではこのような手法でつくられるナノス ケールの物質群、とりわけ内部空間を持つ中空化合物 の自己集合に着目して、ナノスケール材料の新しい設 計と合成、ならびにその特異な機能の開拓(新しい反応 の創出や物性の探索、自己集合の機構解明など)を 研究しています。最近では、M30L60やM48L96組成にも及 ぶ巨大中空錯体の構築にも成功しています。また、自己 集合による細孔性錯体の合成と、結晶空間での機能創 出にも取り組んでいます。ごく最近、細孔性錯体に溶液 状態から吸蔵された有機化合物が、細孔内で平衡の 位置に収まる現象に着目し、「試料の結晶化を必要とし ないX線構造解析手法(結晶スポンジ法)」を開発しま した。革新的な構造解析技術として、アカデミアのみな らず、微量成分の迅速構造決定を必要とする創薬や 食品などの産業分野からも高い注目を集めています。

Our laboratory is exploring the construction of new molecular materials through metal-directed self-assembly. By using coordination bonds with appropriate bond energy and well-defined geometries as the driving force of self-assembly, a variety of three-dimensional architectures have been constructed at will. Among these nanostructures, we are particularly interested in hollow frameworks with a large inner space, where new properties and functions are developed. Recent outstanding results include the self-assembly of gigantic $M_{30}L_{60}$ and M₄₈L₉₆ spherical complexes. We are also interested in reproducing solution reactions within the pore of self-assembled porous complexes. In due course, we have recently developed a new X-ray technique that does not require the crystallization of target compounds (crystalline sponge method). This innovative analysis method is attracting considerable interests of not only academia but also industries such as pharmaceutics and foods companies.

X-ray structure of M48L96 complex.

参考文献

1) Q.-F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi, and M. Fujita, "Self-Assembled $M_{24}L_{48}$ Polyhedra and Their Sharp Structural Switch upon Subtle Ligand Variation" *Science* **328**, 1144-1147 (2010).

2) D. Fujita, K. Suzuki, S. Sato, M. Yagi-Utsumi, Y. Yamaguchi, N. Mizuno, T. Kumasaka, M. Takata, M. Noda, S. Uchiyama, K. Kato, and M.Fujita "Protein encapsulation within synthetic molecular hosts" *Nat. Commun.* **3**, 1093 (2012).

 "X-ray analysis on the nanogram to microgram scale using porous complexes" Y. Inokuma, S. Yoshioka, J. Ariyoshi, T. Arai, Y. Hitora, K. Takada, S. Matsunaga, K. Rissanen, M. Fujita *Nature* **495**, 461-466 (2013).

4) "Self-assembly of $M_{30}L_{60}$ lcocidodecahedron" D. Fujita, Y. Ueda, S. Sato, H. Yokoyama, N. Mizuno, T. Kumasaka, M. Fujita *Chem* **1**, 91-101 (2016).

5) Self-Assembly of Tetravalent Goldberg Polyhedra from 144 Small Components D. Fujita, Y. Ueda, S. Sato, N. Mizuno, T. Kumasaka, M. Fujita, *Nature* **540**, 563-566 (2016).

共同利用・共同研究をさえる最先端の研究設備

State-of-the-art facilities supporting cutting-edge research

研究施設

極端紫外光研究施設 UVSOR Synchrotron Facility

光は、その波長によって、赤外線、可視光線、紫外線、極端紫外線、X線、と 様々な名前で呼ばれます。この様々な波長域の光を一度に出すことの できる装置がシンクロトロン光源です。高エネルギーの電子ビームが高磁 場中で発するシンクロトロン光は、あらゆる波長域において高強度で指 向性が高く、分子科学を始め幅広い研究分野で利用されています。分子 科学研究所の極端紫外光研究施設は1983年に稼働を始めたシンクロ トロン光源ですが、幾度かの改良を経て、現在でも、極端紫外線から赤外線・ テラヘルツ波に至る低エネルギーのシンクロトロン光源として世界最高 水準の高輝度性を誇っています。その特性を活かして、物質の機能性の起源 である電子状態の直接観測が行われています。UVSORという愛称で 世界的に知られ、国内のみならず世界各地から利用者を受け入れています。

Light is called with various names such as infrared, visible, ultraviolet, vacuum-ultraviolet and X-ray, depending on its wavelength. A synchrotron light source is capable of producing light in the ultra-wide wavelength range from infrared to X-rays.

Synchrotron light radiated by high energy electrons traveling in a strong magnetic field is intense and highly collimated. It is widely used in various research fields including molecular science. In IMS, a synchrotron light source has been operational since 1983. After several upgrades, it is still the brightest in the world among low energy synchrotron light sources. By utilizing its excellent performance, the electronic structure that is the origin of the functionalities of solids is directly observed. This facility is called UVSOR and is used by many researchers not only from our country but also from overseas.

UVSORの シンクロトロン光を用いた 走査型透過X線顕微鏡装置 Scanning Transmission X-ray Microscope utilizing synchrotron radiation from UVSOR.

機器センター Instrument Center

機器センターは分子スケールナノサイエンスセンターと分子制御レー ザー開発研究センターの汎用機器を統合して、平成19年4月に新たに発 足しました。機器センターでの主たる汎用機器は山手地区のNMR、質 量分析装置、粉末X線回折装置、円二色性分光装置、明大寺地区の ESR、SQUID磁束計、X線回折装置(粉末、単結晶)、波長可変ピコ秒 レーザーシステム、蛍光分光装置、紫外可視近赤外分光装置などです。 また大学連携研究設備ネットワーク事業を推進し、各種講習会の実施 や、機器利用の予約・課金webシステムを提供し、全国的な汎用機器の 共同利用を支援しています。平成27年度からはナノプラットフォーム事 業が統合され、施設利用による共用設備運用に加えて、協力研究を通じ て多くの先端機器が利用可能となっています。

Instrument Center was established in 2007 by integrating two research centers in IMS. The main instruments maintained in YAMATE campus are: NMR, MALDI, X-ray diffractometers, etc; in MYODAIJI: ESR, SQUID, SEM, Spectrometers (FTIR, UV-vis, ESCA, ARUPS), etc. The center organizes the Inter-University Network for Common Utilization of Research Equipments and Nanotechnology Platform Program supported by MEXT.

CCD単結晶X線解析計 CCD X-ray Diffractometer.

研究施設

装置開発室 Equipment Development Center

装置開発室では、分子科学研究に必要な様々な実験装置の製作・開発を 行っています。機械、エレクトロニクス、微細加工などの設備を有し、 高度な技術・技能を有する技術者が配属されています。研究所創設当初 から、所内外の研究者と密接に連携し、独創的な研究を可能とする 様々な実験装置の開発を手掛けてきました。将来の分子科学研究を 支えるために、より先進的な技術の習得にも積極的に取り組んでいます。 研究者や学生に対して機械加工や電子回路工作に関する講習会を開催し、 技術の普及にも努めています。

Equipment development center provides technical services to support advanced molecular sciences with new equipments. Machining, electronics, micro-patterning, and 3D-printing facilities are maintained by skilled technical staffs who help researchers design and fabricate state-of-the-art equipment.

岡崎共通研究施設

計算科学研究センター Research Center for Computational Science

我が国唯一の分子科学分野の理論計算科学研究のための共同利用施設です。先導的な学術研究の発信はもとより、岡崎地区の3研究所と全国の分子科学とバイオサイエンスの研究者に対して、大学等では不可能な大規模計算を実行できるハード環境と様々なプログラムソフトを提供しています。平成29年10月からは従前の2システムを統合化した総理論演算性能が4PFlopsの「高性能分子シミュレータ」の運用を開始し、大規模な計算が実行できる環境を提供しています。

Research Center for Computational Science provides state-of-the-art computational resources to academic researchers in molecular science and related fields, e.g. quantum chemistry, molecular simulations, and solid state physics. The computer systems consist of NEC LX406Rh-2, LX110Rh-1, LX108Th-4G and Fujitsu PRIME HPC FX10. Total performance is 4PFlops.

私たちの使命 Our Mission

先端的な研究を推進する拠点事業

Founding the research cores in advanced molecular science

分子科学研究所は他大学や研究機関と連携し、様々なプロジェクトを推し進めています。

ナノテクノロジープラットフォーム事業(H24-H33)

先端ナノテク分子・物質合成拠点の形成(民間の有償利用、海外からの直接利用申請にも対応)

参加機関

分子研が代表機関、全国の9機関と連携

ポスト「京」重点課題5「エネルギーの高効率な創出、 変換・貯蔵、利用の新規基盤技術の開発」(H26-H31)

高効率、低コスト、低環境負荷で持続可能なエネルギー社会に向けた、ポスト「京」による新規基盤技術の確立

参加機関 分子研を代表機関とし、袖戸大、東大

分子研を代表機関とし、神戸大、東大、名大、理研等が参加

Nanotechnology Platform (FY2012-2021) Molecule and Material Synthesis Platform

"Priority Issue on Post-K computer" (Development of New Fundamental Technologies for High-Efficiency Energy Creation, Conversion/Storage and Use) funded by MEXT

国内外の研究者への共同研究・共同利用支援に関する事業 Serving as a core organization for domestic and international collaborations

国内・海外の研究者が分子研を訪れ、施設や機器を利用しています。

分子科学研究所は、UVSOR、および、計算科学研究センターなどの大型施設 を、「施設利用」として当該分野コミュニティーの研究者に広く利用して頂い ています。また、メゾスコピック計測研究センター、機器センターなどの 研究センター、装置開発室において、先端的な装置を利用して共同で研究を 進めて頂くとともに、測定法や物質合成手法の開発などを支援しています。 さらに、これらセンターならびに各研究領域における研究資源を利用しな がら、所内の教員と複数の所外研究者との連携の下で行う「課題研究」、所内 の教員と一対一で共同研究を行う「協力研究」も実施しています。また、 「大学連携研究設備ネットワーク」の中核拠点として、分子科学領域におけ る先端的研究設備の相互利用による共同研究の促進にも取組んでいます。 これらのハードウェアを中心とした共同利用と共に、特定の課題に関する討 論を深め、更なる新しい発展を探るための有効な手段として、所外の研究者の 提案をもとにした研究集会である「分子研研究会」、「分子科学国際研究集会 (岡崎コンファレンス)」を毎年複数回開催しています。

共同利用国際研究 International Joint Research

UVSORをはじめ、所内の最先端施設・装置を海外の研究者に利用開放し、 共同利用・共同研究を行っています。

48件実施(2016.10-2017.9)

 IMS opens up state-of-the-art facilities including UVSOR for collaborative and/or joint researches.

48 projects (October 2016 - September 2017)

■共同利用研究実施一覧 平成29年度

実施内容	件数	人数		
課題研究	1	10		
協力研究	73	238		
研究会	10	182		
若手研究会等	2	41		
岡崎コンファレンス	0	0		
装置開発施設利用	2	6		
電子計算機施設利用	224	837		
UVSOR施設利用	160	867		
所長招へい	100	100		
ナノプラット協力研究	37	83		
ナノプラット施設利用	153	438		
合 計	762	2,802		

大学連携研究設備ネットワークの構築 Inter-University Network for Common Utilization of Research Equipments (EqNW)

分子科学研究所は、広く国内の研究者がインターネットを通じて大学の研究 設備を有効に活用するための組織である「大学連携研究設備ネットワーク による設備相互利用と共同研究の促進」事業の中核機関を務めています。 本ネットワークには、全国の大学や企業を含めた約300の機関が参加して おり、2,000台以上の研究設備の利用案内とそのうち500台以上の設備に ついての利用予約・課金システムを運用しています。1万名を超える研究者 がユーザーとして登録されており、毎月10,000件以上の利用実績があり ます。一部は依頼計測も可能です。自前で高価な装置を購入することなく 先端測定が行える研究支援事業として広く有効に活用されています。

·More than 10,000 registered users

Mutual utilization among national universities (since FY2007)
 Open for private universities, public institutes, private companies (more than 200 organizations)

大学連携研究設備ネットワークの概念

ナノテクノロジープラットフォーム分子・物質合成 MEXT Nanotechnology Platform Molecule & Material Synthesis Platform

平成24年度から始まった文科省ナノテクノロジープラットフォーム事業は、 最先端の研究設備とその活用のノウハウを有する機関が緊密に連携して 全国的な設備の共用体制を共同で構築し、産業界や研究現場が有する技 術的課題の解決へのアプローチを提供するとともに産学官連携や異分野 融合を推進するものです。本事業では、微細構造解析、微細加工、分子・物 質合成の3つの全国規模のプラットフォームが構築され、分子研は、分子・ 物質合成の代表機関と実施機関を担い、高性能かつ安全安心な次世代分 子物質材料創成のための研究支援を実施しています。詳細は下記URLに アクセスの上ご参照ください。

•MEXT Nanotechnology Platform (FY2012-2021)

IMS as the core representative organization of the Molecule & Material Synthesis Platform
 Open for domestic and international universities, institutes & private companies

[事業全体] https://nanonet.mext.go.jp/ [代表機関] https://mms-platform.com/ [分子研] https://nanoims.ims.ac.jp/ims/

世界に広がるネットワークの構築 Constructing a world-wide research network

分子科学研究所は、国際的な分子科学研究の中核拠点としても積極的な役割を果たしています。

国際共同研究拠点の形成、若手研究者の人材育成 International Collaboration Programs

分子科学研究所は創設以来、多くの国際会議の開催、多数の外国人研究 員の受け入れ、および国際共同研究事業の積極的な推進など、国際的に 開かれた研究所としての役割を担ってきました。国際共同研究を更に推 進するために、平成16年度より独自の国際共同研究事業を開始していま す。この事業では、(1)分子研国際インターンシッププログラム、(2)分子 研国際若手研究者招へいプログラム等の特長ある国際共同を推進してい ます。アジア各国および欧米の研究教育拠点等と学術交流協定を締結し、 国際共同を重点化しています。

外国人研究者の国別内訳(平成28年度) Visiting Foreign Researchers (FY2016)

アメリカ USA 14 イギリス UK 2 ドイツ Germany 27 フランス France 20 韓国 Korea 16 中国 China 15 ロシア Russia 1 その他 Others 76 合計 Total 171(人)

IMS has accepted many foreign scientists and hosted numerous international conferences since its establishment and is now widely recognized as a leading institute that promotes firm international collaborations. In 2013, IMS initiated a new program to further promote international collaboration. As a part of this new program, IMS has been promoting the IMS International Internship Program for Foreign Graduate Students and the IMS International Fellowship Program for Young Foreign Researchers, through several foreign nominating institutions and universities.

学術国際交流協定に基づく交流(12機関) International Exchange Agreements (12 organizations)

École Nationale Supérieure de Chimie de Paris

Helmholtz-Zentrum Berlin für Materialien und Energie

Indian Institute of Science Education and Research Kolkata

Institute of Chemistry, Chinese Academy of Sciences

フランス

フランス国立パリ高等化学学校 ドイツ

ヘルムホルツセンター・ベルリン ベルリン自由大学

フィンランド

オウル大学

インド

インド科学研究所 インド科学教育研究所コルカタ校

中国

中国科学院化学研究所 タイ

タイ国立ナノテクノロジー研究センター

台湾 中央研究院原子與分子科学研究所

韓国

韓国高等科学技術院 韓国化学会物理化学ディビィジョン 成均館大学

Institute of Atomic and Molecular Sciences, Academia Sinica Korea

France

Germany

Finland

India

China

Thailand

Taiwan

Freie Universität Berlin

Indian Institute of Science

University of Oulu

College of Natural Science, Korea Advanced Institute of Science and Technology (KAIST) Physical Chemistry Division, Korean Chemical Society Sungkyunkwan University

National Nanotechnology Center, National Science and Technology Development Agency

Exchange Programs of SOKENDAI (6 Universities) 総研大の交流(6機関)

タイ					
カセサ	ート大	ーン大学 学 理学 理学部	部	部	

マレーシア マラヤ大学 理学部

シンガポール 南洋理工大学 理学部

韓国

科学技術聯合大学院大学校

Thailand

Chulalongkorn University / Faculty of Science Kasetsart University / Faculty of Science Mahidol University / Faculty of Science Malaysia University of Malaya / Faculty of Science Singapore

Nanyang Technological University / The college of Science

Korea

University of Science and Technology

	7
3	1

充実した研究環境が育む分子科学の担い手

Excellent environment nurtures next generation of molecular scientists

人材育成·大学院教育■

本研究所は、分子科学における最先端の研究を推進するだけではなく、学生の教育を行い、明日の分子 科学を担っていく人材を育成することにも力を入れています。

総合研究大学院大学 SOKENDAI The Graduate University for Advanced Studies

分子科学研究所は、総合研究大学院大学の物理科学研究科におい て構造分子科学専攻と機能分子科学専攻を担当し、次代を担う若 手研究者の育成にも積極的に取り組んでおり、大学や民間で活躍 する多くの卒業生を輩出しています。

The gtaduate students of the Graduate University for Advanced Studies (SOKENDAI) take molecular science classes, including chemical science, physical science, material science, and bioscience.

研究所で学ぶためには Admissions

分子科学研究所で学ぶためには、総合研究大学院大学の物理科学研 究科・構造分子科学専攻もしくは機能分子科学専攻へ入学していた だくことになります。

※すでに大学院に在籍している学生の方は「特別共同利用研究員」として 分子研で学ぶことが出来ます。

If you wish to study at IMS, you need to apply for admission to either the Department of Structural Molecular Science or the Department of Functional Molecular Science of SOKENDAI.

出身者進路状況 Career after graduation

充実した研究指導と研究設備 High quality advising and facilities

実験、研究に集中 できる環境 Excellent environment for research

図書、オンライン ジャーナルの取り揃え Extensive library and online journals 国際学会・共同研究など 活発な国際交流 International conferences and joint researches

生きた英会話・プレゼン 講座の英語教室 Technical and scientific English education

総合研究大学院大学とは? About SOKENDAI?

総合研究大学院大学(総研大)は昭和 63年に、全国の大学共同利用機関を 基盤機関として、新しい理念と組織の 下に創設された学部を持たない大学 院のみの大学です。本部を神奈川県 葉山町に置き、学生のみならず研究者

自身の総合性と学際性を高めることを目指して、コース別教育プログラム、 学生セミナー、国際シンポジウム、共同研究等々のユニークな活動を本部で 行いつつ、平素の授業や研究活動は各基盤研究機関において行っています。

SOKENDAI [The Graduate University for Advanced Studies] was founded on October 1, 1988 as one of the national universities of Japan. The headquarter is located in Shonan Village (Hayama-cho, Miura-gun) in Kanagawa Prefecture, Japan. Each department is housed in its parental institute.

特別共同利用研究員

他の大学に所属している修士、博士の学生の方々を「特別共同利用研究員」として受入れ、研究指導 を行っています。全国から毎年20名程度の学生の方々が分子研に滞在し、研究に取り組んでいます。

受入1大学(過去10年):北海道大学、茨城大学、宇都宮大学、千葉大学、東京大学、東京工業大学、 新潟大学、信州大学、静岡大学、名古屋大学、愛知教育大学、名古屋工業大学、豊橋技術科学大学、 北陸先端科学技術大学院大学、京都大学、大阪大学、神戸大学、岡山大学、広島大学、愛媛大学、 九州大学、名古屋市立大学、早稲田大学他

広く社会に「科学の芽」を育む

Promoting widespread awareness of science in the society

社会との交流■

分子科学フォーラム Molecular Science Forum 豊田理化学研究所との共催で"分子科学 フォーラム"を年4回開催しています。国内 外の著名な研究者を講師にお迎えし、分子 科学をはじめとして様々な分野の研究を わかりやすく紹介して頂いています。

国研セミナー

Knowledge Enhancement Workshop for Science Teachers 岡崎市の科学技術・理科教育振興事業の 一環として、岡崎3研究所と岡崎南ロータ リークラブとの協力事業の一つとして行 われているセミナーです。岡崎市内の小・ 中学校の理科教員を対象として、岡崎3 研究所の研究者が講師となって昭和60年 から始まり、毎年行われています。

見学受入れ

Campus Tour

研究所を多くの方に知って頂くため、見学の受入れを行ってい ます。体験型展示室をはじめ、最先端の研究施設等を毎年た くさんの方に見学いただいています。平成29年度は327人の 見学者にお越しいただきました。

メディアによる情報発信

Public Relations 最新の研究成果や各種募集をホームページ に掲載しています。また、分子研が発行して いる出版物についても、ホームページより ご覧いただけます。 https://www.ims.ac.jp/

出前授業

Collaboration with Okazaki City Education Board

学校では普段体験できないことを体験 してもらい、科学に対しての夢を持って もらうために、主に岡崎市内の中学校を 対象として、岡崎3研究所の研究者が講義・ 実験を行っています。

スーパーサイエンスハイスクール Super Science Highschool 文部科学省が指定した科学技術、理科・ 数学教育を重点的に行う高等学校(スー パーサイエンスハイスクール)活動を、 自然科学研究機構として支援しています。

一般公開

Open Campus 研究所で行われている活動について、広く一般の方々 に理解を深めていただくため、3年に1回一般公開を 行っています。公開日(平成30年10月20日予定)は 実験室の公開や講演会など様々なイベントを行います。

■自然科学研究機構 岡崎共通施設 Common Facilities in Okazaki

岡崎情報図書館

Okazaki Library and Information Center http://www.lib.orion.ac.jp/

岡崎情報図書館は、岡崎3研究所の図書、雑誌 等を収集・整理・保存し、機構の職員、共同利用 研究者等が利用できます。

[主な機能] 情報検索サービス Web of Science、 SciFinder 等

In the Okazaki Library and Information Center, books and journals from three affiliated institutes (IMS, NIBB, NIPS) are collected, arranged, and stored for the convenient use of staff and visiting users.

[Available services]

 $\ensuremath{\bigcirc}$ Online access to various journals and databases (Web of Science, SciFinder, etc) available.

岡崎コンファレンスセンター Okazaki Conference Center

http://www.orion.ac.jp/occ/

学術の国際的及び国内的交流を図り、機構の研究、 教育の進展に資するとともに、社会との連携、交流 に寄与することを目的とした施設です。大隅

ホール200名、中会 議室112名、小会議室 (2室)各50名の利用 ができます。

The Okazaki Conference Center was founded in February 1997 for the purposes of hosting international and domestic academic exchanges, developments in research and education in the three Okazaki institutes, as well as the promotion of social cooperation.

An auditorium (Ohsumi Conference Hall), a middle room (Conference Room B) and two small rooms (Conference Room C) with seating capacities of 200,120, and 50, respectively, are available.

岡崎共同利用研究者宿泊施設

Accommodation Facilities for Researchers http://www.orion.ac.jp/lodge/

日本全国及び世界各国の大学や研究機関から 共同利用研究等のために訪れる研究者のため の宿泊施設として共同利用研究者宿泊施設

(三島ロッジ、明大寺 ロッジ)があります。

For visiting researchers from universities and institutes within Japan and all over the world, the dormitory called the Mishima Lodge is available. It takes 10 minutes on foot from the Myodaiji area to the Mishima Lodge. On September 2010, the new dormitory called "Myodaiji lodge" opened at the Myodaiji area. This dormitory is for long stay.

社会との連携 Community Activities

施設 Facilitiy	面積 m ²
①研究棟 Main Office Bldg.	2,752
②実験棟 Main Laboratory Bldg.	8,857
③南実験棟 South Laboratory Bldg.	3,935
④計算科学研究センター棟 Computer Center Bldg.	2,474
⑤ 極低温棟 Instrument Center (Low-temp.Div.) Bldg.	1,527
⑥化学試料棟 Chemical Materials Bldg.	1,063
⑦レーザー棟 Laser Facility Bldg.	1,053
⑧装置開発棟 Equipment Development Center	1,260
⑨極端紫外光実験棟 UVSOR Synchrotron Facility	3,097
⑩事務センター棟 Administration Bureau	2,371
⑪ 図書館 Library	2,002
⑫職員会館 Faculty Club & Coop	1,575
⑬エネルギーセンター Electricity Control Station	1,514
⑭ 廃棄物貯蔵庫 Waste Strage	60
⑮警備員室 Guard Station	131
⑯ 岡崎コンファレンスセンター Okazaki Conference Center	2,863
⑰ 三島ロッジ Mishima Lodge	4,079
⑧山手1号館A Yamate No.1 Bldg. A	4,674
⑩山手1号館B Yamate No.1 Bldg. B	2,303
⑳山手2号館 Yamate No.2 Bldg.	8,703
 ④山手3号館 Yamate No.3 Bldg. 	10,757
⑳山手4号館 Yamate No.4 Bldg.	3,813
㉓山手5号館 Yamate No.5 Bldg.	664
❷実験排水処理施設 Waste Disposal and Treatment Facility	111
容高圧配電施設 High-Voltage Distribution Facility	440
¹²⁸ 明大寺ロッジ Myodaiji Lodge	1,023
②IBBPセンター棟 NIBB Center of Interuniversity Bio-Backup Project	492

運営

顧問

他の管理運営に関して、所長 中嶋 の諮問に応じて助言等に当た Hrvoje Petek 米国ピッツバーグ大学教授 [運営顧問] ります。外国人運営顧問に 加えて、国内で運営顧問及び 菊池 研究顧問を置いています。 書馬 明 浜松ホトニクス株式会社代表取締役社長 瀧川 松本 吉泰 公益財団法人豊田理化学研究所常勤フェロー

研究所の研究、事業計画その

[研究顧問]

敦 慶應義塾大学理工学部教授

仁 東京大学物性研究所教授

昇 株式会社豊田中央研究所代表取締役所長

■運営会議											
研究教育職員の人事、共同	[運営:	会議委員	員]◎…議長 ○·	··副議長	Ę		青野	予 重利	生命創	成探究	センター教授
利用·共同研究等研究所の運	有賀	哲也	京都大学大学院	理学研究	究科教授·副学長		秋山	」修志	協奏分	子シス	テム研究センター教授
営に関する重要事項で、所長	鹿野日	日一司	東京大学大学院	工学系研	开究科教授		江房	ē 正博	理論·計	算分子	科学研究領域教授
が必要と認めるものについ	\odot * \blacksquare	忠弘	東北大学多元物質科	学研究所	先端計測開発センター教	授	魚伯	= 泰広	生命・釒	昔体分子	子科学研究領域教授
て所長の諮問に応じます。	袖岡	幹子	理化学研究所袖岡	有機合成	化学研究室主任研究員	Ę	大梨	彩 賢治	光分子	科学研	究領域教授
	高原	淳	九州大学先導物	質化学研	开究所教授		岡本	、 裕巳	メゾス	コピック	7計測研究センター教授
	谷村	吉隆	京都大学大学院	理学研究	究科教授		加藤	夏 晃一	生命創	成探究	センターセンター長
	中井	浩巳	早稲田大学理工	学術院教	教授		解民	し 聡 しょうしょう しょうしょうしょう しょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうし	光分子	科学研	究領域教授
	西原	寛	東京大学大学院	理学系研	开究科教授		◎ 齊藤	夏 真司	理論·計	算分子	科学研究領域教授
	藤井	正明	東京工業大学科	学技術創	創成研究院教授		山本	、 浩史	協奏分	子シス	テム研究センター教授
	山口	茂弘	名古屋大学トランス	フォーマテ	ィブ生命分子研究所教授	Ŧ	横⊔	」利彦	物質分	子科学	研究領域教授
運営会議に、次の人事選考	[人事]	選考部 3	会]○…部会長			[共同	研究専門]委員会]	○…委員	長	
部会及び共同研究専門委員	有賀	哲也(京大院副学長)	青野	重利(生命創成教授)石森	浩一郎	(北大院	敎授)	魚住	泰広(分子研教授)
会を置きます。	鹿野田	日一司(東大院教授) 〇	秋山	修志(分子研教授)	唯	美津木	(名大院	敎授)	齊藤	真司(分子研教授)
	中井	浩巳(早稲田大院教授)	江原	正博(分子研教授)	中澤	康浩(图	反大院教	受)	山本	浩史(分子研教授)
	西原	寛(東大院教授)	解良	聡(分子研教授)	藤井	正明(夏	東工大院	敎授)	田中	清尚(分子研准教授)
	山口	茂弘(名大教授)	横山	利彦(分子研教授)	○青野	重利(生	L命創成	敎授)	西村	勝之(分子研准教授)
										藤	貴夫(分子研准教授)
■学会等連絡会議 ——											
所長の要請に基づき学会そ	東	正樹(東工大院教授)	杉田	有治(理研主任研	究員)	飯野	亮太(分子	F研教授)	
の他の学術団体等分子科	雨宮	健太(高エネ研教授)	高橋	聡(東北大教授)	石﨑	章仁(分子	F研教授)	
学コミュニティとの連絡、運	岩田	耕一(学習院大教授)	棚瀬	知明(奈良女子大	院教授)	岡本	裕巳(分-	F研教授)	
営会議、研究施設運営委員	大内	幸雄(東工大院教授)	菱川	明栄(名大教授)		解良	聡(分	F研教授)	
会委員候補者等の推薦等に	陰山	洋(京大院教授)	八島	栄次(名大院教授))	椴山	儀恵(分子	F研准教	授)	
関することについて検討し、	北川	進(京大高等院特別教授)	吉澤	一成(九大教授)						
意見を述べます。	黒田	一幸(早稲田大院教授)	藤井	朱鳥(東北大院准	教授)					

[外国人運営顧問] Eberhard Umbach

Benjamin List

Member of the Board of acatech

(National Academy of Science and Engineering, Muenchen)

Former President of Karlsruhe Institute of Technology

Director, Max-Planck-Institut für Kohlenforschung

■教授会議

専任·兼任·併任·客員の教授及び准教授で構成し、研究及び運営に関する事項について所長を補佐します。

中期計画

文部科学大臣から提示された平成28年度から平成33年度までの第3期中期目標に対して、自然科学研究機構として第3期中期計画を立てました。中期計画を着実 に行うために毎年、年度計画を立て、年度終了後、実績報告書を文部科学省に提出することになっています。分子科学研究所は研究者個人の自由な発想に基づく 基礎学術研究を中心に据えた研究所です。研究の神髄は計画通りに行かない意外性にあります。そのため、分子科学研究を支えている種々の研究設備も、限定 した目的のためのものではなく、学問の多様性に対応できるものになっています。以下は、このような背景で立案した分子科学の研究分野の中期計画(抜粋)です。

分子科学分野において、物質・材料の基本となる様々な分子及び分子システムの構造、機能、反応に関して、原子・分子及び電子のレベルで研究します。 それによって、化学現象の法則を発見するとともに、一般化して新たな現象や機能を予測、実現します。 (1)理論的・計算化学的方法により、様々な分子システムの構造・性質とその起源を解明するとともに、新たな機能開拓に向けた研究を行います。 (2)高度な光源や先端的分光法の開発を行うとともに、分子システムに内在する高次機能の機構解明や光制御に関する研究を行います。 (3)新規な電気的・磁気的・光学的特性や高効率な物質変換・エネルギー変換を目指して、分子物質や化学反応系の設計・開発を行います。

Administration

NAKAJIMA, Atsushi Hrvoje Petek	Professor, Keio University Professor, University of Pittsburgh							
Councillors ———								
KIKUCHI, Noboru	President, Toyota Central R&D Labs Inc							
HIRUMA, Akira	President and CEO, Hamamatsu Photonics K.K.							
TAKIGAWA, Masashi	Director/Professor, Institute for Solid State Physics (ISSP) of The University of Tokyo							
	IMOTO, Yoshiyasu Fellow, Toyota Physical and Chemical Research Institute							
Foreign Councillors —								
Eberhard Umbach	Member of the Board of acatech (National Academy of Science and Engineering, Muenchen) Former President of Karlsruhe Institute of Technology							
Benjamin List	Director, Max-Planck-Institut für Kohlenforschung							
Advisory Committee –								
ARUGA, Tetsuya	Professor, Graduate School of Science, Kyoto University							
KANODA, Kazushi	Professor, Department of Applied Physics, The University of Tokyo							
KOMEDA, Tadahiro	Professor, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University (Vice-chairman)							
SODEOKA, Mikiko	Chief Scientist, Synthetic Organic Chemistry Laboratory, RIKEN							
TAKAHARA, Atsushi	Professor, Institute for Materials Chemistry and Engineering, Kyushu University							
TANIMURA, Yoshitaka	Professor, Department of Chemistry, Kyoto University							
NAKAI, Hiromi	Professor, Department of Chemistry & Biochemistry, Waseda University							
NISHIHARA, Hiroshi	Professor, School of Science, The University of Tokyo							
FUJII, Masaaki	Professor, Institute of Innovative Research, Tokyo Institute of Technology							
YAMAGUCHI, Shigehiro	Professor, ITbM, Nagoya University							
AONO, Shigetoshi	Professor, Exploratory Research Center on Life and Living Systems							
AKIYAMA, Shuji	Professor, Institute for Molecular Science							
EHARA, Masahiro	Professor, Institute for Molecular Science							
UOZUMI, Yasuhiro	Professor, Institute for Molecular Science							
OHMORI, Kenji	Professor, Institute for Molecular Science							
OKAMOTO, Hiromi	Professor, Institute for Molecular Science							
KATO, Koichi	Professor, Exploratory Research Center on Life and Living Systems							
KERA, Satoshi	Professor, Institute for Molecular Science							
SAITO, Shinji	Professor, Institute for Molecular Science (Chair)							
YAMAMOTO, Hiroshi	Professor, Institute for Molecular Science							
YOKOYAMA, Toshihiko	Professor, Institute for Molecular Science							

アクセス Access

■ 東京方面から

豊橋駅下車、名鉄(名古屋鉄道)に乗り換えて、東岡崎駅下車(豊橋一東岡崎 間約20分)、南口より徒歩約7分。

■ 大阪方面から

名古屋駅下車、名鉄に乗り換え、東岡崎駅下車(名鉄名古屋一東岡崎間約 30分)、南口より徒歩約7分。

■ 中部国際空港から

名鉄空港線:中部国際空港駅から名古屋方面に乗り、神宮前で豊橋方面に乗り 換え東岡崎で下車(中部国際空港ー東岡崎間約60分)、南口より徒歩7分。 空港バス:JR岡崎駅行に乗り、東岡崎駅下車(中部国際空港ー東岡崎間約 65分)、南口より徒歩約7分。

■ 自動車利用の場合

東名高速道路の岡崎ICを下りて国道1号線を名古屋方面に1.5km、市役所南 東信号を左折。ICから約10分。

From Tokyo

At Toyohashi Station, catch the Meitetsu train and get off at Higashi-Okazaki Station (approx. 20 min from Toyohashi to Higashi-Okazaki).Turn left at the ticket gate and walk south for approx. 7 min.

From Osaka

At Meitetsu Nagoya Station, catch the Meitetsu train and get off at Higashi-Okazaki Station (approx. 30 min from Meitetsu Nagoya to Higashi-Okazaki). Turn left at the ticket gate and walk south for approx. 7 min.

From Central Japan International Airport (Centrair)

By Train

Catch the Meitetsu train at Central Japan International Airport Station and get off at Higashi-Okazaki Station (approx. 60 min from the Central Japan International Airport Station to Higashi-Okazaki).Turn left at the ticket gate and walk south for approx. 7 min.

By Bus

Catch the Meitetsu bus at Central Japan International Airport and get off at Higashi-Okazaki Bus Station (approx. 65 min from the Airport to Higashi-Okazaki).

You are on the north side of the Meitetsu Higashi-Okazaki Station. Go through the passage connecting the south side of the Higashi-Okazaki Station and further walk south for approx. 7 min.

By Car

Take the Okazaki Exit on the Tomei Highway. Approx.1.5 km toward Nagoya, turn left at the City office S.E. turnoff (approx. 10 min from Okazaki Exit).

明大寺地区:〒444-8585 愛知県岡崎市明大寺町字西郷中38番地 山手地区:〒444-8787 愛知県岡崎市明大寺町字東山5-1 TEL.0564-55-7000 FAX.0564-54-2254 https://www.ims.ac.jp/