NATIONAL INSTITUTES OF NATURAL SCIENCES IN S [Institute for Molecular Science]

^{大学共同利用機関法人 自然科学研究機構} 分子科学研究所

2 0 2 1

分子と対話し、その豊かな知恵を活かす

分子は物質の基本構成単位であり、物質の示す性質や機能を担う根源です。物質の機能を深く知り、これを高度に利用するためには、原子・分子レベルで 物質を理解すること、さらには、分子から構成されるシステムの階層を超えた機能を理解することが不可欠です。分子科学は、分子の持つ特性と機能を物理 及び化学的な手法で体系づけようとする物理学と化学の境界領域の科学で、その対象は個々の分子から宇宙・生命科学まで広い範囲にわたります。分子 科学研究所は設立以来40年以上にわたり、研究の中核拠点として、実験研究と理論研究の両面から我が国の分子科学分野を先導する研究に関与して きました。その背景には、関連研究分野の研究者コミュニティーの支持が不可欠であり、総合的な共同利用研究所としての機能を維持するには、今後も関連 研究者の共同研究の場、研究者の交流や国際学術交流の場を提供すること、さらには、専門的な基盤に立つ高度な研究者の養成のミッションを継続して、 国際的な研究センターとしての機能を維持し続けることが分子科学研究所の使命です。

現在の分子科学研究所は、光分子科学研究領域、物質分子科学研究領域、生命・錯体分子科学研究領域そして、理論・計算分子科学研究領域の 4研究領域と、それらを繋ぐ協奏分子システム研究センターとメゾスコピック計測研究センターを加えて4つの領域と2つの研究センターが研究基盤を構成して います。さらに極端紫外光研究施設(UVSOR)、計算科学研究センター、機器センター、装置開発室などの研究施設を擁し、分子の構造と反応そして機能に関 する基礎研究を推進しています。新たな計測手法の開発と普及は大事なミッションです。自然科学研究機構の生命創成探究センターとも協力して、分子科学 研究所は、学術研究の基本を踏まえ、科学分野を先導する研究を推進し、新しい科学領域を拓く挑戦を続けていきます。

分子科学の世界的なCenter of Excellence として、分子科学研究所は世界の人材循環の要として、これからも発展し続けることを目指します。

Molecule is a fundamental unit of materials, origin to form their properties and functions. Molecular functions are in variety of systems, from individual molecules to molecules in the cosmos, in biology systems and in man-made devices. To understand the molecular functions and to highly utilize the systems, Molecular Science now requires bold strides across chemistry, materials and biological sciences.

IMS has served as a center of excellence to lead molecular science activities over four decades long. With the support from the community of related research fields, IMS will continue standing as a comprehensive open-use laboratory, providing a place of joint-research, exchanging global researchers and nurturing young scientists.

IMS has six cores to shape its research activities: Department of Theoretical and Computational Molecular Science, Photo-Molecular Science, Materials Molecular Science, and Life and Coordination-Complex Molecular Science; Research Center of Integrative Molecular Systems is an interdisciplinary playground exploring molecular-hierarchy systems; Center of Mesoscopic Science propels methodological and functional studies of molecular systems. IMS houses open-use research facilities including UVSOR to promote discovery of molecular behaviors. Our challenge continues. Exploratory Research Center on Life and Living Systems, integrating knowledge of three institutes of NIBB, NIPS and IMS, on the quest of the secret keys to life and living.

Keeping its foundation on basic research, IMS will never stop being at the forefront of future Molecular Science.

Institute for Molecular Science Director General KAWAI, Maki

分子科学研究所とは What is IMS?

大学共同利用機関として

大型研究施設や測定装置等を国内外の P.39 大学研究者に広く利用いただいています。

We offer open access to researchers from Japan and abroad to both our facilities and equipment.

学生の教育を行い、明日の分子科学を P.44担っていく人材を育成しています。

We commit ourselves to educating students and fostering the next generation of Molecular Scientists.

組織図 Organization

分子科学研究所の研究職員は研究領域あるいは特別研究部門、社会連携研究部門、研究施設に所属しています。技術推進部に属する技術職員は主に研究施設に配置されています。安全衛生管理や広報・研究者支援・国際化などの活動は、専任職員を配置して、組織化しています。また、同じく大学共同利用機関法人自然科学研究機構に属する基礎生物学研究所、生理学研究所とともに、岡崎共通研究施設を設置しています。平成30年には自然科学研究機構に生命創成探究センターが発足し、岡崎3研究機関がその運営に協力しています。岡崎共通研究施設のうち、計算科学研究センターに属する2研究グループ、及び生命創成探究センターに属する4研究グループは、分子科学研究所に併任しており、分子科学研究所の一員として等しく大学等の研究者の共同研究・共同利用を推進・支援する体制をとっています。

Each research staff of Institute for Molecular Science (IMS) belongs to a department or to a research facility. Majority of the technical staffs are assigned to Research Facilities. Supporting activities such as safety, public affairs, international affairs, and so forth are organized by dedicated staffs. We also have facilities (including Research Center for Computational Science, RCCS) shared with two other institutes (National Institute for Basic Biology, National Institute for Physiological Sciences) in the same campus. In 2018, Exploratory Research Center on Life and Living Systems (ExCELLS) has been launched as a new Research Center belonging to National Institutes of Natural Sciences, with which three Okazaki Research Institutes cooperate. Some research groups in these Centers are appointed also as those of IMS, and promote and support collaborations with researchers in universities or other research organizations as well.

沿革 History

昭和50年4月	分子科学研究所創設(昭和50年4月22日) 機器センター設置(~平成9年3月) 装置開発室設置	Apr. 1975	Institute for Molecular Science founded (April 22, 1975) Instrument Center established (-March 1997) Equipment Development Center established
昭和51年5月	化学試料室設置(~平成9年3月)	May 1976	Chemical Materials Center established (-March 1997)
昭和52年4月	電子計算機センター設置(〜平成12年3月) 極低温センター設置(〜平成9年3月)	Apr. 1977	Computer Center established (-March 2000) Low-Temperature Center established (-March 1997)
昭和56年4月	岡崎国立共同研究機構創設(~平成16年3月)	Apr. 1981	Okazaki National Research Institutes (ONRI) founded (-March 2004)
昭和57年4月	極端紫外光実験施設設置	Apr. 1982	UVSOR Facility established
昭和59年4月	錯体化学実験施設設置(~平成19年3月)	Apr. 1984	Coordination Chemistry Laboratories established (-March 2007)
昭和63年10月	総合研究大学院大学開学 数物科学研究科(〜平成16年3月、以降は 物理科学研究科) 構造分子科学専攻、機能分子科学専攻	Oct. 1988	Graduate University of Advanced Studies founded School of Mathematical and Physical Science, Department of Structural Molecular Science/Department of Functional Molecular Science established
平成9年4月	分子制御レーザー開発研究センター設置 (~平成29年3月) 分子物質開発研究センター設置(~平成14年3月)	Apr. 1997	Laser Research Center for Molecular Science established (-March 2017) Research Center for Molecular Materials established (-March 2002)
平成12年4月	共通研究施設設置(岡崎統合バイオサイエンス センター(〜平成30年3月)、計算科学研究センター)	Apr. 2000	Research facilities (Okazaki Institute for Integrative Bioscience (-March 2018) and Research Center for Computational Science) established
平成14年4月	分子スケールナノサイエンスセンター設置 (~平成25年3月)	Apr. 2002	Research Center for Molecular-scale Nanoscience established
平成16年4月	大学共同利用機関法人自然科学研究機構創設	Apr. 2004	National Institutes of Natural Sciences founded as one of the four Inter-University Research Institute Corporations
平成19年4月	4研究領域に研究組織再編、機器センター再設置	Apr. 2007	7 Departments reorganized to 4 Departments Instrument Center re-established
平成25年4月	協奏分子システム研究センター設置	Apr. 2013	Research Center of Integrative Molecular Systems established
平成29年4月	メゾスコピック計測研究センター設置	Apr. 2017	Center for Mesoscopic Sciences established
平成30年4月	生命創成探究センター(自然科学研究機構)設置	Apr. 2018	Exploratory Research Center on Life and Living Systems established
令和3年4月	分子研技術課、技術推進部に改組	Apr. 2021	Technical and Engineering Department established.

※岡崎共通研究施設、生命創成探究センターの分子研兼任を含み、それらの独自予算で雇用された教員・支援員は除く。

分子」についての知識

を深

8

理論·計算分子科学研究領域 Theoretical and Computational Molecular Science

見えない複雑な分子を描き出す Describing invisible and intricate molecules 分子およびその集合体(気相、液相、固相)、さらには生体分子やナノ物質など複雑系や複合系に関する構造および機能 を量子力学、統計力学、分子シミュレーションを中心とした理論・計算分子科学の方法により解明します。

光分子科学研究領域 Photo-Molecular Science

光を造る、光で観る、光で制御する Create, observe and control with light

分子に光をあてると様々な興味深い性質を現したり、化学反応を起こしたりします。分子科学研究所では、分子の構造 や性質を光で調べ、反応や物性を光で制御する研究を行っています。そのために必要となる高度な光源の開発も行っ ています。

物質分子科学研究領域 Materials Molecular Science

物質創成、機能制御、新しい観測手法の開発 Materials development, functional control and developping new measurement techniques 新たな現象や有用な機能の発見を目指して、新規分子の開発やそれらの高次集積化と、電気・光物性、反応性、触媒能 などの研究を行っています。

生命・錯体分子科学研究領域 Life and Coordination-Complex Molecular Science 生体機能の実現と無駄のない化学反応へ Realizing vital functions and efficient chemical reactions 生物が示す多彩な生体機能の発現が、どのような機構で行われているか分子レベルで解明するための研究を行っています。 中心金属と配位子の組み合わせで金属錯体は多種多彩な機能を発現します。その特色を生かしてエネルギー・環境問題 軽減のための高効率エネルギー変換、水中での有機化合物の分子変換、無機小分子の活性化を行っています。

協奏分子システム研究センター Research Center of Integrative Molecular Systems 分子システムの解析と創成 Analysis & Design of Sophisticated Molecular Systems 分子がシステムとして組織化され、卓越した機能を発現する仕組みを研究しています。1つの分子と分子システムを

分子がシステムとして組織化され、卓越した機能を発現する仕組みを研究しています。1つの分子と分子システムを 結ぶ階層構造を理解し、その原理に基づいた分子システムのデザインに取り組んでいます。

メゾスコピック計測研究センター Center for Mesoscopic Sciences

新しい計測で分子システムのありのままの姿を解析 Innovative measurements to approach the nature of molecular systems 分子が集まって機能するシステムでは、ミクロとマクロを繋ぐ階層間の情報・物質のやりとりがその特性発現に役割を担っ ていると考えられます。その現場をできる限りありのままの姿で捉え、新しい分子の能力を引き出すための極限的計測 法の研究を行います。

特別研究部門 Advanced Molecular Science

分子科学分野のトップレベル研究の支援と、研究者層の厚みを増強するための支援を行います。

社会連携部門 Division of Research Innovation and Collaboration

分子研と企業などからの資金によって運営するオープンイノベーション拠点とし産官学の共同研究を実施します。

斉藤 真司(教授) SAITO, Shinji

1988年慶應義塾大学理工学 部卒、1990年京都大学大学院 工学研究科修士課程修了、 1995年博士(理学)(総研大)。 1990年分子科学研究所技官、 1994年名古屋大学理学部助手、 1998年助教授を経て2005年 10月より現職。1999年基礎生 物学研究所、2000年岡崎統 合バイオサイエンスセンター、 2005年東京大学客員助教授、 2006年から2010年東京大学、 2008年国立情報学研究所、 2020年から2022年Indian Institute of Technology Kanpur客員教授。 TEL: 0564-55-7300

mail: shinji@ims.ac.jp

- 1988 B.S. Keio University
- 1990 M.Eng.KyotoUniversity 1995 Ph.D. The Graduate
- University for Advanced Studies
- 1990 Technical Associate, Institute for Molecular Science
- 1994 Research Associate, Nagoya University
- 1998 Associate Professor, Nagoya University
- 2005 Professor, Institute for Molecular Science
- 2006 Professor, The Graduate University for Advanced Studies

〈Keywords〉
Fluctuation,
Reaction,
Function,
Glass Transition

凝縮系における反応、機能、物性を生み出す ダイナミクスの理論研究

Theoretical Studies on Dynamics behind Reactions, Functions, and Glass Transitions in Many-Body Molecular Systems

水の特異的な熱力学的性質やタンパク質の機能など はどのように生まれるのでしょうか?溶液や生体分子な どの系は凝縮系と呼ばれます。このような凝縮系には、フェ ムト秒(10-15秒)という非常に速い時間スケールの分子 振動から、マイクロ秒(10-6秒)からミリ秒(10-3秒)そし てさらに遅い時間スケールの分子の集団的な運動や タンパク質の構造変化が存在します。これらの運動は広 い時間スケールにわたっているだけでなく、異なる空間 スケールをもち複雑に絡み合っています。さらに、温度 や圧力により運動の様相も大きく変化します。このよう な複雑な運動により、分子集合体としての構造は絶えず 変化しています。また、そのような揺らぎの中で、様々 な化学反応が進行し、それらの結果として、物質の様々 な物性やタンパク質の機能につながります。また、これ までは、非常に多くの分子の集団的な平均として反応が 調べられていました。しかし、実験の進展により、個々の分 子の構造変化や反応を追跡することも可能になってき ました。その結果、集団平均された結果には見られない 複雑な様相も明らかになってきました。私達は統計力学 や量子力学に基づく独自の理論計算・解析手法の開発 とシミュレーションの活用により分子運動を解析し、物質 の性質やタンパク質の機能がどのように生み出されるの か、また、化学反応がどのように進行するのかなどを理 論・計算科学的に研究しています。

Scheme of enzymatic reaction. Reactions rapidly take place through 'conformational excited states' on a twodimensional surface expressed by fast and slow variables.

参考文献

 T. L. C. Jansen, S. Saito, J. Jeon, and M. Cho, "Theory of Coherent Two-dimensional Vibrational Spectroscopy," *J. Chem. Phys.* (Perspective) **150** 100901 (17 pages) (2019)(invited).
 K. Kim and S. Saito, "Multiple Length and Time Scales of Dynamic Heterogeneities in Model Glass-Forming Liquids: A Systematic Analysis of Multi-Point and Multi-Time Correlations," *J. Chem. Phys.* (Special Topic: Glass Transition) **138**, 12A506 (13 pages) (2013) (Invited).
 T. Mori and S. Saito, "Conformational excitation and non-equilibrium transition facilitate enzymatic reactions:

Many-body molecular systems, such as liquids and biomolecules, show complicated dynamics over a wide range of spatiotemporal scales and yield various thermodynamic and dynamic properties. For example, in supercooled liquids, spatiotemporal non-uniform motions are found. The motions known as dynamic heterogeneity are now considered to be a crucial clue to understand supercooled liquids and glass transition. The heterogeneous dynamics affect reaction dynamics. Furthermore, recent experimental and theoretical studies have demonstrated that reactions and conformational dynamics at the single-molecule level are described by non-Poisson processes. In addition to these examples, it is known that conformational changes with proper time scales are essential to protein functions. Thus, understanding of spatiotemporal heterogeneous dynamics in the many-body molecular systems is essential to elucidate thermodynamics and dynamic properties, reactions, and functions. So far, we have studied the complicated dynamics in these systems using multidimensional spectroscopy and multi-time correlation functions. As the development of these studies, we theoretically and computationally investigate how reactions proceed and biological functions are generated in fluctuating environment and how conformational dynamics yield interesting thermodynamic properties and change toward glass transition.

Schematic figure of low- (blue) and high- (red) density local structures in supercooled water. Local density fluctuations generate thermodynamic and dynamic anomalies of water. "(Saito et al., *J. Chem. Phys.* **149**, 124504 (8 pages) (2018).)"

Application to Pin1 peptidyl-prolyl isomerase," J. Phys. Chem. Lett. **10**, 474-480 (2019).

4) S. Saito, M. Higashi, and G. R. Fleming, "Site-dependent fluctuations optimize electronic energy transfer in the Fenna-Matthews-Olson protein," *J. Phys. Chem. B* **123**, 9762-9772 (2019).

5) S. Saito and B. Bagchi, "Thermodynamic picture of vitrification of water through complex specific heat and entropy: A journey through "No Man's Land"," *J. Chem. Phys.* **150**, 054502 (14 pages) (2019).

南谷 英美(准教授) MINAMITANI, Emi

2005年大阪大学工学部応用 自然科学科卒業、2010年大阪 大学大学院工学研究科博 士課程修了、博士(工学)、 2010年日本学術振興会特別 研究員(PD)、2011年理化学 研究所基礎科学特別研究 員、2013年東京大学大学院 工学系研究科助教、2015年 東京大学大学院工学系研究 科講師を経て、2019年4月 より現職。2017年科学技術振 興機構さきがけ研究者兼務。 TEL: 0564-55-7301 mail: minamitani@ims.ac.jp

2005 B.S. Osaka University
2010 Ph.D. Osaka University
2010 Postdoctoral Fellow, Osaka University
2011 Special Postdoctral Researcher, RIKEN
2013 Assistant Professor, The University of Tokyo

2015 Lecturer, The University of Tokyo

2019 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

(Keywords) Quantum Many-Body Interaction, Density Functional Theory, Quantum Field Theory, Electron-Phonon Interaction, Magnetism

量子多体効果が織りなす新奇固体物性の理論研究 Theoretical Studies on Novel Physical Properties Arising from Many-Body Interaction

固体の様々な驚くべき物性は、電子や固体振動の 量子であるフォノンといった様々な素励起間の量子的 な相互作用によって生じています。私達のグループ では、電子エレクトロニクス・スピントロニクスといった 応用にも結びつく、ナノスケールでの磁性とエネル ギー散逸の学理解明を目指して、場の量子論や第一原 理計算を組み合わせた研究手法の開発や、実験グ ループと密接に連携した共同研究を進めています。

ナノスケールの磁性に関しては、近藤効果やスピン 軌道相互作用に着目しています。近藤効果は、局在 スピンと伝導電子が相互作用し、近藤1重項と呼ばれ る特徴的な量子多体状態を形成する現象です。スピン 軌道相互作用は、スピンを持った電子が異方的な軌道 運動をすることで生じる相対論的な効果で、スピン が特定の方向を向きやすくなります。私達はとくに、 表面上のナノ構造や吸着分子における新奇現象の可 能性を探っています。

エネルギー散逸については、特に電子フォノン相互 作用に注目した研究を進めています。格子振動の量子、 フォノンと電子の相互作用は、電気抵抗、熱電効果から 超伝導に至るまで固体物理の随所にあらわれる最も 基本的な相互作用の一つですが、相互作用強度の見 積もりは簡単ではありません。私達のグループでは 密度汎関数理論に基づく第一原理計算を応用した 電子フォノン相互作用の精密計算を駆使して、各種 表面分光法に現れる電子フォノン相互作用のシグナル を捉えることや、電子フォノン相互作用に由来する 熱物性への解明に取り組んでいます。 Quantum many-body interaction is a source of novel physical properties in the condensed matters. In our group, we develop theoretical methods by combining quantum field theory and density functional theory, and carry out collaborative research with experimental groups. As specific targets, we focus on magnetism in nanostructure and energy dissipation.

For magnetism in nanostructure, we are interested in the Kondo effect and spin-orbit interaction. The Kondo effect arises from the interaction between the localized spin and conduction electrons, which forms a characteristic many-body state so called the Kondo singlet state. The spin-orbit interaction originating from relativistic effect constrains the direction of magnetic moment to specific direction. We investigate the possibility of novel physical phenomena induced by these interactions in the nanostructure and molecules on surfaces.

For energy dissipation, we focus on the effect of electron-phonon interaction. The electron-phonon interaction is one of the most fundamental interactions in the condensed matter physics, and the quantitative evaluation in realistic materials is highly demanding. We adopt the ab-initio calculation to analyze the signal of electron-phonon coupling in surface spectroscopy and thermal properties in various kind of solids.

Schematic image of the theoretical method developed in our group

参考文献

1) Emi Minamitani, Noriyuki Tsukahara, Daisuke Matsunaka, Yousoo Kim, Noriaki Takagi, Maki Kawai, "Symmetry-driven novel Kondo effect in a molecule", *Phys. Rev. Lett.*, **109** (2012) 086602.

2) Emi Minamitani, Ryuichi Arafune, Noriyuki Tsukahara, Yoshitaka Ohda, Satoshi Watanabe, Maki Kawai, Hiromu Ueba, Noriaki Takagi, "Surface phonon excitation on clean metal surfaces in scanning tunneling microscopy", *Phys. Rev. B*, **93**, 085411 (2016).

3) E. Minamitani, N. Takagi, S. Watanabe, "Model Hamiltonian approach to the magnetic anisotropy of iron phthalocyanine at solid surfaces", *Phys. Rev. B*, **94**, 205402 (2016). 4) R. Hiraoka, E. Minamitani, R. Arafune, N. Tsukahara, S. Watanabe, M. Kawai, and N. Takagi, "Single-Molecule Quantum Dot as a Kondo Simulator", *Nat. Commun.*, 8 16012 (2017).

5) Emi Minamitani, Ryuichi Arafune, Thomas Frederiksen, Tetsuya Suzuki, Syed Mohammad Fakruddin Shahed, Tomohiro Kobayashi, Norifumi Endo, Hirokazu Fukidome, Satoshi Watanabe, Tadahiro Komeda, "Atomic-scale characterization of the interfacial phonon in graphene/SiC" *Phys. Rev. B*, **96**, 155431 (2017).

石崎 章仁(教授) ISHIZAKI, Akihito

2008年京都大学大学院理学 研究科博士課程修了、博士(理 学)。2008年カリフォルニア大 学バークレー校化学部化学科 にて日本学術振興会海外特 別研究員、2010年ローレンス・ バークレー国立研究所物理 生物科学部門博士研究員、 2012年3月分子科学研究所特 任准教授を経て、2016年4月 より現職。2016年名古屋大学 大学院理学研究科客員教授 兼任。

TEL: 0564-55-7310

FAX: 0564-53-4660 mail: ishizaki@ims.ac.jp

2008 D.Sc. Kyoto University

- 2006 JSPS Research Fellow, Kyoto University
- 2008 JSPS Postdoctoral Fellow for Research Abroad, University of California, Berkeley
- 2010 Postdoctoral Fellow, Lawrence Berkeley National Laboratory
- 2012 Research Associate Professor, Institute for Molecular Science
- 2013 Fellow 2012–2013, Wissenschaftskolleg zu Berlin
- 2016 Professor, Institute for Molecular Science

Keywords>

Quantum Dynamics, Energy/Charge Transfer, Photosynthetic Light Harvesting

凝縮相分子系における量子動力学現象の理論

Theoretical Studies of Quantum Dynamics in Condensed Phase Molecular Systems

我々が量子力学現象を議論するとき、実のところ、 いかなる量子系も純粋な孤立系とは見なすことはでき ません。常に何らかの外界と接触することで、ときに 量子性が破壊され、ときには量子性が頑健に保持される 一複雑な分子系においては量子性の維持と崩壊のバ ランスが化学ダイナミクスの様態に大きな影響を及ぼ し得るため「多自由度ゆえに生じる揺らぎや摩擦に曝 されながら量子効果はどのような影響を受けるのか」 を理解することは、重要な課題となります。

そのような量子散逸現象の顕著な例として、私たちが 最近10年ほど取り組んでいる光合成初期過程における 電子エネルギー移動や電荷分離過程があります。光合 成は光という物理エネルギーを細胞が利用可能な化 学エネルギーに変換する分子過程であり、糖の生成を 通して地球上の全ての生命活動を維持しています。 近年は再生可能エネルギーの観点からも注目され、 エネルギー資源問題に応える緊急課題として光合成 機構の仕組みを取り入れた分子素子の研究開発が進 められています。太陽光の強度が弱い場合には、捕獲さ れた光エネルギーは色素分子の電子励起エネル ギーとなりほぼ100%の量子収率で反応中心タンパク 質へ輸送され一連の電子移動反応を駆動しますが、広大 な物理空間にありながら、また絶え間ない分子運動 と揺らぎの中にありながら電子励起エネルギーはどの ようにして反応中心へ迷子にもならず一意的に辿り 着きエネルギー変換に用いられるのでしょうか?

私たちは、超高速レーザー分光などの実験研究者と密 に連携しながら、量子散逸系動力学理論・非線形光学応 答理論を駆使することで光合成初期過程におけるエネ ルギー輸送やエネルギー変換過程などの凝縮相分子 系における量子動力学現象の解明に取り組んでいます。

参考文献

 A. Ishizaki & G. R. Fleming, "Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer," *J. Chem. Phys.* **130**, 234111 (2009); (10 pages).
 A. Ishizaki & G. R. Fleming, "Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature," *Proc. Natl. Acad. Sci. USA* **106**, 17255-17260 (2009).
 A. Ishizaki & G. R Fleming, "Quantum coherence in

photosynthetic light harvesting," Annu. Rev. Condens. Matter Phys. **3**, 333-361 (2012).

G. S. Schlau-Cohen, A. Ishizaki, Tessa R. Calhoun, Naomi S. Ginsberg, Matteo Ballottari, Roberto Bassi & Graham R. Fleming, "Elucidations of timescales and origins of quantum electronic coherence in LHCII," *Nature Chemistry* 4, 389-395 (2012).
 G. D. Scholes et al. "Using coherence to enhance function in chemical and biophysical systems," *Nature* 543, 647-656 (2017).

Essentially, any quantum systems can never be regarded as "isolated systems." Quantum systems are always in contact with "the outside world" and hence, their quantum natures are sometimes sustained and sometimes destroyed. In condensed phase molecular systems, especially, quantum systems are affected by the huge amount of dynamic degrees of freedom such as solvent molecules, amino acid residues in proteins, and so on. Balance between robustness and fragility of the quantum natures may dramatically alter behaviors of chemical dynamics.

One of the notable examples of such quantum dynamical phenomena is the energy transport and energy conversion processes in photosynthetic systems. Photosynthesis provides the energy source for essentially all living things on Earth, and its functionality has been one of the most fascinating mysteries of life. The conversion starts with the absorption of a photon of sunlight by one of the light-harvesting pigments, followed by transfer of electronic excitation energy to the reaction center, where charge separation is initiated. At low light intensities, surprisingly, the quantum efficiency of the transfer is near unity. A longstanding question in photosynthesis has been the following: How does light harvesting deliver such high efficiency in the presence of disordered and fluctuating dissipative environments? Why does not energy get lost? At high light intensities, on the other hand, the reaction center is protected by regulation mechanisms that lead to guenching of excess excitation energy in light harvesting proteins. The precise mechanisms of these initial steps of photosynthesis are not yet fully elucidated from the standpoint of molecular science.

Our group is investigating quantum dynamical phenomena in condensed phase molecular systems such as energy transport and conversion processes in photosynthetic systems through the use of quantum dissipative theories and nonlinear optical response theories in close collaboration with experimental researchers of optical spectroscopy.

The crystal structure of LHCII isolated from spinach, which is the most abundant photosynthetic antenna complex in plants containing over 50% of the world's chlorophyll molecules.

江原 正博(教授) EHARA, Masahiro

1988年京都大学卒業、1993 年同大学院博士課程修了、 博士(工学)。基礎化学研究所 博士研究員、ハイデルベルグ 大学博士研究員、1995年京都 大学助手、2002年同助教授を 経て、2008年6月より現職。 TEL: 0564-55-7461 FAX: 0564-55-7025 mail: ehara@ims.ac.jp

1988 B.S. at Kyoto Univ. Faculty of Engineering

- 1993 Ph.D. at Kyoto Univ. Graduate School of Engineering
- 1994 Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellow

Visiting Researcher at Heidelberg Univ.

1995 Assitant Professor at Kyoto Univ. Graduate School of Engineering

2002 Associate Professor at Kyoto Univ. Graduate School of Engineering

2008 Professor, Institute for Molecular Science

2012 Professor at Element Strategy for Catalysis and Battery (ESICB), Kyoto Univ. (additional post)

Keywords

Quantum Chemistry, Photophysical Chemistry, Heterogeneous Catalysis

高度な電子状態理論に基づく複雑系の基礎化学 Fundamental Chemistry of Complex Systems using Advanced Electronic Structure Theories

自然界の様々な化学事象は分子の電子状態に基づ いて発現しています。私たちは、複雑な化学事象の原 理を明らかにし、化学概念を構築することを目的とし て、高度な電子状態理論を開発し、光化学や触媒化学 の基礎研究を行っています。現在の主な研究テーマは 以下のとおりです。

(1) 複雑系の高精度電子状態理論の開発

分子の電子状態や化学反応には複雑な電子構造をもつ 状態が存在します。これらの複雑系の電子状態に適用 できる高度な量子状態理論や計算アルゴリズムを開発 し、基礎化学から応用化学に亘る広い分野の化学事象 を研究しています。例えば、励起状態や化学反応の溶媒 効果を記述するPCM SAC-CI法、準安定な共鳴状態 を計算するCAP/SAC-CI法やACCC SAC-CI法、複 雑な電子状態を精密に記述するSAC-CI general-R 法、分子の電子状態や化学反応の圧力効果を研究する XP-PCM法を開発し、応用研究を実施しています。 (2) 不均一系触媒の理論研究

金属酸化物や凝縮相高分子に担持された金属ナノ 粒子は、高効率な触媒反応を実現します。私たちは、 これらの複雑・複合系である金属ナノ粒子の触媒活性 を量子化学計算を用いて、担体効果や合金効果に注目 して研究しています。最近の研究では、凝縮相金・パラ ジウム合金微粒子の低温C-CI活性化、金クラスターの 様々な触媒反応、アルミナ担持銀クラスターの水素 活性化などのメカニズムを理論的に明らかにしました。 実験と協働し、触媒・電池の元素戦略拠点のプロジェクト において、高度な触媒活性を持つ不均一系触媒の研究 開発に挑戦しています。

参考文献

1) M. Ehara, T. Sommerfeld, "CAP/SAC-CI Method for Calculating Resonance States of Metastable Anions," *Chem. Phys. Lett.* **537**, 107-112 (2012).

2) R. Cammi, R. Fukuda, M. Ehara, H. Nakatsuji, "SAC-CI Method in the Polarizable Continuum Model-Theory for Solvent Effect on Electronic Excitation of Molecules in Solution," *J. Chem. Phys.* **133**, 024104-1-24 (2010).

 R.N. Dhital, C. Kamonsatikul, E. Somsook, K. Bobuatong, M. Ehara, S. Karanjit, H. Sakurai, "Low-Temperature Carbon-Chlorine Bond Activation by Bimetallic Gold/Palladium Alloy Nanoclusters: An Application to Ullmann Coupling," *J. Am. Chem. Soc.* **134**, 20250-20253 (2012).

 P. Hirunsit, K. Shimizu, R. Fukuda, S. Namuangruk, Y. Morikawa, M. Ehara, "Cooperative H₂ Activation at Ag Cluster/θ-Al₂O₃(110) Dual Perimeter Sites: A Density Functional Theory Study," *J. Phys. Chem. C.* **118**, 7996-8006 (2014). Various chemical phenomena in nature appear originating in molecular electronic states. We develop the advanced electronic structure theories to investigate the photochemistry and catalysis. Our current research subjects are as follows.

(1) Advanced electronic structure theories for large complex systems

Complex electronic structure exists in molecular electronic states and chemical reactions. We develop the advanced electronic structure theories and their efficient computational algorithm applicable to large complex systems and investigate various phenomena in fundamental and applied chemistry; for example, PCM SAC-CI for the solvent effects on excited states and chemical reactions, CAP/SAC-CI and ACCC SAC-CI for metastable resonance states, SAC-CI general-R for complex electronic states, and XP-PCM for high pressure effects on electronic states and reactions.

(2) Heterogeneous catalysts

Metal nanoclusters (NC) supported by metal oxides or colloidal phase polymers achieve highly efficient catalytic reactions. We study the catalytic activity of these complex systems in view of metal support interaction and alloy effects using quantum chemical calculations. For example, we elucidated the mechanism of the low-temperature C-Cl activation on Au-Pd NC:PVP, various catalytic reactions on Au NC:PVP, and the H₂ activation of Ag NC/alumina. We challenge the development of advanced heterogeneous catalysts in the project of Elements Strategy Initiative for Catalysts and Batteries (ESICB) collaborating with experimental groups.

Fig. 1 Electronic resonance states of DNA/RNA nucleobases

Fig. 2 Solvation dynamics of Au/Pd alloy nanocluster

奥村 久士(准教授) OKUMURA, Hisashi

1998年慶應義塾大学理工学 部卒業、2002年同大学大学院 理工学研究科博士課程修了、 博士(理学)。東京大学工学系 研究科日本学術振興会特別 研究員(PD)、分子科学研究 所助手、名古屋大学大学院理 学研究科COE特任講師、ラト ガース大学研究助教授を経て 2009年5月より現職。

TEL: 0564-59-5213

FAX: 0564-55-7025

mail: hokumura@ims.ac.jp

1998 B.S. Keio University

2002 Ph.D. Keio University

Postdoctoral Fellow, The University of Tokyo

Research Associate, Institute for Molecular Science

2004 Research Associate, The Graduate University for Advanced Studies

2006 Research Lecturer, Nagoya University

2008 Research Assistant, Rutgers University

2009 Assistant Research Professor, Rutgers University

> Associate Professor, Institute for Molecular Science

Associate Professor, The Graduate University for Advanced Studies

2018 Associate Professor, Exploratory Research Center on Life and Living Systems

Keywords>

Molecular Dynamics Simulation, Protein,

Amyloid

■計算分子科学研究部門 Computational Molecular Science 生体分子動力学シミュレーション: タンパク質の折りたたみ、変性、凝集、アミロイド線維

Biomolecular Dynamics Simulation: Protein Folding, Denaturation, Aggregation, and Amyloid Fibril

タンパク質は、多数のアミノ酸がペプチド結合により つながったもので、そのアミノ酸の並び方(一次元配列)) はタンパク質の立体構造を決める重要な要素となります。 アミノ酸の一次元配列情報をもとにタンパク質の立体 構造を予測する問題をタンパク質の折りたたみ問題と いいます。この問題が難しい理由は、通常のシミュレー ション手法では多くのタンパク質構造を探索するため に非常に長い時間シミュレーションを行わなければな らないからです。

この問題を解決するためこれまでに有力な手法が いくつか提案されてきました。そのうちの1つである レプリカ交換法では系のコピー(レプリカ)を複数用意 し、シミュレーションの途中で2つのレプリカ間で温度 を交換し、各レプリカの温度を上下させることで効率的 な構造空間のサンプリングを実現します。最近、我々は より強力なレプリカ置換法を考案しました。この方法を 使ってCペプチドの折りたたみシミュレーションを行 い、このペプチドがαヘリックス構造を形成し折りたた む過程を図1のように明らかにしました。

さらに医療への応用にも関心を持っています。タン パク質が間違って折りたたまれることによってひき起こ されるフォールディング病という病気があります。アル ツハイマー病やハンチントン病がその例です。これらの 病気はタンパク質が間違って折りたたまれ凝集し、アミ ロイドという針状の物質を作ってしまうことが原因です が、アミロイドが形成されるしくみはまだよくわかって いません。レプリカ置換分子動力学法を使ってアミロ イドの形成メカニズムの解明に取り組んでいます。また アミロイド線維は超音波を使って破壊することができ るのですが、その過程を非平衡分子動力学シミュレー ションにより初めて解明しました(図2)。

Fig. 1 (a) Free-energy landscape and (b) typical structures at local-minimum free-energy states of C-peptide.

Biomolecules such as proteins and peptides have complicated free-energy landscape with many local minima. The conventional canonical-ensemble molecular dynamics (MD) simulations tend to get trapped in a few of the local-minimum states. To overcome these difficulties, we have proposed new generalized-ensemble algorithms, such as replica-permutation method. We apply these methods to proteins and peptides and try to predict the native structures of proteins as in Figure 1.

We are also interested in amyloid fibrils, which are insoluble aggregates of misfolded fibrous proteins and associated with more than 20 human neurodegenerative diseases (Figure 2). For example, Alzheimer's disease is related to amyloid- β (A β) peptides. To overcome these diseases, it is essential to understand amyloid genesis and disruption. We perform such MD simulations of amyloid fibrils.

参考文献

1) H. Okumura and S. G. Itoh, "Structural and fluctuational difference between two ends of A β amyloid fibril: MD simulation predicts only one end has open conformations", *Sci. Rep.* **6**, 38422 (9 pages) (2016).

2) S. G. Itoh and H. Okumura, "Oligomer formation of amyloid-β(29-42) from its monomers using the Hamiltonian replica-permutation molecular dynamics simulation", *J. Phys. Chem. B* **120**, 6555-6561 (2016).

3) H. Okumura and S. G. Itoh, "Amyloid fibril disruption by ultrasonic cavitation: Nonequilibrium molecular dynamics simulations," *J. Am. Chem. Soc.* **136**, 10549-10552 (2014).
4) S. G. Itoh and H. Okumura: "Replica-permutation method with the Suwa-Todo algorithm beyond the replica-exchange method", *J. Chem. Theory Comput.* **9**, 570-581 (2013).

Fig. 2 Disruption process of an amyloid fibril of $A\beta$ peptides by supersonic wave. The amyloid fibril is disrupted when a bubble collapses.

岡崎圭一(准教授) OKAZAKI, Kei-ichi

2004年京都大学理学部卒、 2009年神戸大学大学院自然 科学研究科博士課程修了、博 士(理学)。日本学術振興会特 別研究員(DC2,PD)、同海外特 別研究員、米国国立衛生研究 所博士研究員、マックスプラン ク生物物理学研究所博士研究 員を経て、2016年6月より分 子科学研究所特任准教授。 2020年12月より、計算科学 研究センター准教授。

TEL: 0564-55-7468 mail: keokazaki@ims.ac.jp

2004 B.S. Kyoto University

2006 M.S. Kobe University

2009 Ph.D. Kobe University

2007 JSPS Research Fellow (DC2)

2009 JSPS Postdoctoral Fellow (PD)

> Postdoctoral Fellow, Waseda University

- 2010 Part-time Lecturer, Waseda University
- 2011 Postdoctoral Fellow, National Institutes of Health, USA
- 2012 JSPS Postdoctoral Fellow for Research Abroad
- 2013 Postdoctoral Fellow, Max Planck Institute of Biophysics, Germany
- 2016 Research Associate Professor, Institute for Molecular Science
- 2020 Associate Professor, Research Center for Computational Science

Keywords

Biomolecular Machines, Theoretical Biophysics, Molecular Simulations

■理論·計算分子科学研究部門 Theoretical and Computational Molecular Science

生体分子マシンの機能発現ダイナミクスの 解明とその制御

Elucidation and Control of Dynamics of Biomolecular Machines in Function

細胞で働く分子モーターやトランスポーターなど生 体分子マシンは、機能する際に構造を変化させること が知られています。例えば、ミトコンドリアでATPを合 成するATP合成酵素は、化学エネルギーを用いて回 転する分子モーターです。細胞膜を超えて基質分子を 輸送するトランスポーターは、膜に対して内側に開い た構造と外側に開いた構造との間で構造変化するこ とで、基質輸送を行っています。このように自然が作り 上げた精巧かつダイナミックなナノマシンが働く仕組 みを原子・分子レベルで解明し、その知見に基づいた 機能制御を目指しています。

私たちは、生体分子マシンが機能する瞬間の動き 「機能発現ダイナミクス」を、原子・分子レベルでコン ピュータ上に再現して「見る」ことで、その仕組みを理 解したいと思っています。しかしながら、これは容易な ことではありません。なぜなら、生体分子マシンは、巨 大な分子である上に、機能する時間スケールはミリ秒 以上と(分子スケールにしては)遅いからです。数十万 原子以上からなる巨大な系のミリ秒時間スケールの 動きをシミュレーションするのは通常の手法では困難 です。そこで、動く瞬間を切り出してシミュレーション する手法や、複数原子をまとめて粗視化する手法など を用いて、機能する瞬間の動きを捉えようとしています。

私たちはこれまで、細胞内の主なエネルギー供給源 であるATP合成酵素^{1)や}、細胞内のイオン濃度を調節 するトランスポーターNa⁺/H⁺交換輸送体^{2),3}に取り組 んできました。Na⁺/H⁺交換輸送体においては、イオン 輸送が起こる瞬間の動きをシミュレーションで捉えて、 イオン輸送を制御している重要な相互作用を同定しま した。この相互作用を実験的に調節することで、イオン 輸送速度を2倍以上速くすることに成功しました。この ように、シミュレーションで解明した生体分子マシンの 仕組みに基づいた機能制御に挑戦していきます。

参考文献

1) K. Okazaki & G. Hummer, "Elasticity, friction, and pathway of gamma-subunit rotation in F₀F₁-ATP synthase." *Proc. Natl. Acad. Sci. USA* **112**:10720-10725 (2015).

 K. Okazaki, D. Wöhlert, J. Warnau, H. Jung, Ö. Yildiz,
 W. Kühlbrandt and G. Hummer "Mechanism of the electroneutral sodium/proton antiporter PaNhaP from transition-path shooting", *Nature Communications* 10, 1742 (10 pages) (2019).

3) 岡崎圭一 "分子シミュレーションによるNat/H*交換輸送体のメカ ニズム解明と輸送速度を上げる改変" 生物物理 60:102-104 (2020). Biomolecular machines, such as molecular motors and transporters working in the cell, are known to change their structure when they function. For example, ATP synthase, which synthesizes ATP in mitochondria, is a molecular motor that uses chemical energy to rotate. Transporters, which transport substrate molecules across the cell membrane, perform substrate transport by changing their structure between an inwardly and outwardly open structure relative to the membrane. Our goal is to elucidate the mechanism of these elaborate and dynamic nanomachines created by nature at the atomic and molecular level, and to control their functions based on our findings.

We would like to understand the mechanism of biomolecular machines by "seeing" the motion of biomolecular machines at the moment they function, on a computer at the atomic and molecular level. However, this is not an easy task, because biomolecular machines are huge molecules, and their functioning time scale is slow (for a molecular scale) at milliseconds or more. It is difficult to simulate the millisecond time scale motion of a huge system consisting of hundreds of thousands of atoms or more using conventional methods. Therefore, we are trying to capture the motion at the moment of function by using methods such as an importance sampling technique, or coarse-graining multiple atoms together.

We have been working on ATP synthase, which is the main energy source in the cell¹⁾, and Na⁺/H⁺ antiporter^{2),3)} which regulates ion concentrations in the cell. For the Na⁺/H⁺ antiporter, we captured the moment of ion transport by simulations and identified the key interactions that regulate ion transport. By experimentally modulating this interaction, we succeeded in increasing the ion transport rate more than twofold. In this way, we will challenge functional control based on the mechanism of the biomolecular machine elucidated by simulation.

Control of the transporter function based on mechanism elucidated by simulation.

大森 賢治(教授) OHMORI, Kenji

1987年東京大学卒業、1992年 同大学院工学系研究科博士 課程修了、工学博士。東北大学 助手・助教授を経て2003年9月 より現職。2001年~2016年JST CREST事業併任、2004年~ 2005年東北大学客員教授、 2007年~2008年東京工業大学 客員教授、2009年~2011年東京 大学客員教授、2012年~ハイ デルベルグ大学客員教授、2014 年~2016年ストラスブール大学 客員教授。2007年日本学士院 学術奨励賞、2007年日本学術 振興会賞、2009年米国物理学会 フェロー表彰、2012年独フンボ ルト賞、2017年宅間宏記念学術 賞、2018年文部科学大臣表彰。 0564-55-7361 0564-54-2254 EAX: mail: ohmori@ims.ac.jp Graduated from Faculty of Engineering, The University of Tokyo Ph.D. The University of 1987 1992 Tokyo Research Associate, Tohoku University Associate Professor, Tohoku University 2001 Professor, Institute for Molecular Science 2003 Professor, The Graduate University for Advanced Studies 2004- Visiting Professor, 2005 Tohoku University 2007- Visiting Professor, Tokyo 2008 Institute of Technology Visiting Professor, The University of Tokyo 2009 2011 2007- Director, Laser Resear 2010 Center for Molecular Science, IMS 2014- Visiting Professor, 2016 University of Strasbourg 2010- Chairman, Department present of Photo-Mole cular Science, IMS 2012- Humboldt Awardee, present University of Heidelberg Keywords>

(Reywords/

Attosecond, Quantum Simulator,

Quantum Computer

アト秒精度の超高速量子シミュレータ開発と 量子コンピュータへの応用

Development of an Ultrafast Quantum Simulator with Attosecond Precision and Its Applications to Quantum Computing

「物質は見方によって粒子になったり波になったりする。」 量子の世界の本質はここにあります。量子力学が生まれ て100年、コンピュータやCDブレーヤー等、量子力学の 応用製品はなくてはならない存在になりました。しかし、 人類はまだ量子の世界をよく理解しておらず、その応用 の余地も膨大に残されています。私たちは、量子の世界 をより良く理解するために、物質の波を光で完全に制御 するというテーマに挑戦しています¹⁻⁹。

私たちは、電子や原子の波にアト秒(アト=10-18)レベ ルで制御されたレーザー光の情報を転写することで、そ れらをピコメートル(ピコ=10-12)・フェムト秒(フェムト= 10-15)レベルの時空間精度で加工し可視化することに成 功しました1),2)。さらに、この技術を用いて、世界最速レベ ルのスパコンの1000倍以上の速さで計算する分子コン ピュータを開発しました^{3),4)}。つい最近では、世界最速 スパコンでも計算不可能な多数の電子の集団運動をア ト秒レベルでシミュレートできる全く新しい超高速量子 シミュレータの開発に成功しています。-9)。これらの成果 は、朝日新聞や中日新聞を始めとする多数の新聞各紙 で取り上げられた他、英米の科学雑誌Nature、 Science、Nature Physics、Nature Photonics、米国物 理学会Physics、英国物理学会PhysicsWorld、ドイツ物 理学会Pro-Physik、あるいはScienceDaily、PhysOrg、 PopSciなど各国のメディアで大きく報道される等、世界 的な注目を集めています。

今後、私たちの研究の途上で、「物質の波と粒子の性 質がどんなふうに共存しているのか?」そんな100年の 謎を解くためのヒントが見つかるかもしれません。

参考文献

1) "Visualizing picometric quantum ripples of ultrafast wave-packet interference," H. Katsuki et al. *Science* **311**, 1589-1592 (2006).

2) "Actively tailored spatiotemporal images of quantum interference on the picometer and femtosecond scales,"
H. Katsuki et al. *Phys. Rev. Lett.* **102**, 103602 (2009).

 "Ultrafast Fourier transform with a femtosecond laser driven molecule," K. Hosaka et al. *Phys. Rev. Lett.* **104**, 180501 (2010).

Selected for "Editors' Suggestions" in PRL.

- Covered by "Viewpoints" in Physics; Physics 3, 38 (2010).
- Covered by "Research Highlights" in Nature; Nature 465, 138-139 (2010).
- Strong-laser-induced quantum interference," H. Goto et al. Nature Physics 7, 383-385 (2011).
- Highlighted by "News and Views" in Nature Phys. 7, 373-374 (2011).

5) "All-optical control and visualization of ultrafast two-dimensional atomic motions in a single crystal of

It is observed in the double-slit experiment by Akira Tonomura and coworkers that single electrons recorded as dots on a detector screen build up to show an interference pattern, which is delocalized over the screen. This observation indicates that a delocalized wave function of an isolated electron interacts with the screen, which is a bulk solid composed of many nuclei and electrons interacting with each other, and becomes localized in space. This change, referred to as "collapse" in quantum mechanics, is often accepted as a discontinuous event, but a basic question arises: When and how the delocalized wave function becomes localized? Our dream is uncovering this mystery by observing the spatiotemporal evolution of a wave function delocalized over many particles interacting with each other. Having this dream in mind, we have developed coherent control with precisions on the picometer spatial and attosecond temporal scales. Now we apply this ultrafast and ultrahigh-precision coherent control to delocalized wave functions of macroscopic many-particle systems such as an ensemble of ultracold Rydberg atoms and a bulk solid, envisaging the quantum-classical boundary connected smoothly.

Fig.1. Spatiotemporal images of a wave function, which has been designed and visualized in the iodine molecule with precisions on the picometer spatial and attosecond temporal scales. Adopted from ref. 2).

bismuth," H. Katsuki et al. *Nature Commun.* **4**, 2801 (2013). 6) "Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas," N. Takei et al. *Nature Commun.* **7**, 13449 (2016).

 "Ultrafast coherent control of condensed matter with attosecond precision," H. Katsuki et al., *Acc. Chem. Res.* 51, 1174-1184 (2018).

 "Attosecond control of restoration of electronic structure symmetery," C. Liu et al., *Phys. Rev. Lett.* **121**, 173201 (2018).
 "Ultrafast creation of overlapping Rydberg electrons in an atomic BEC and Mott-insulator lattice," *Phys. Rev. Lett.***124**, 253201 (2020).

解良 聡(教授) KERA, Satoshi

1996年千葉大学工学部卒、 1998年日本学術振興会特別 研究員、2001年千葉大学大学 院自然科学研究科修了(博士 (理学))、千葉大学大学院助手、 ブルツブルグ大学ポスドク 研究員、千葉大学大学院融合 科学研究科准教授を経て、 2014年4月より現職。 TEL: 0564-55-7413

mail: kera@ims.ac.jp

1996 B.S. Chiba University1998 M.E. Chiba University2001 Ph.D. Chiba University

- 1998 Research Fellowships for Young Scientists (JSPS)
- 2001 Assistant Professor, Chiba University
- 2003 Research Associate, Institute for Molecular Science

Postdoctoral Fellow, Wuerzburg University

2004 Assistant Professor, Chiba University

2007 Associate Professor, Chiba University

2009 Visiting Associate Professor, Institute for Molecular Science

2013 Adjunct Lecturer, The Open University of Japan

> Visiting Associate Professor, Soochow University

2014 Professor, Institute for Molecular Science

Professor, The Graduate University for Advanced Studies

2021 Visiting Professor, Chiba University, Tohoku University

Keywords>

Photoelectron Spectroscopy, Molecular Film, Electronic State 機能性分子材料の電子物性評価 Electronic Property of Functional Organic Materials

エネルギー・環境問題に対応すべく、有機半導体と呼 ばれる機能性を示す分子群を利用したソフトデバイス (太陽電池やフレキシブル照明など)の研究が賑わいを 見せ、多彩な構造の分子材料が日夜設計・開発されてい ます。しかし依然として個々の分子の特徴を区別し、要 望されるデバイスの中で適切な材料として自在に活用 することができていません。これは本来の特性として絶 縁物たる分子群が「有機半導体」として材料機能を示す 理由とその真の特徴を認識できていないことに帰着し ます。具体的には、デバイスにおける無機物(金属電極 等)が接する界面における分子の変性はもちろんのこ と、構造異方性の高い凸凹した分子界面の原子レベル での相互作用についての理解が全く不十分であるとい うことです。また諸物性の発現機構や原理(相関や因 果)、その制御のための量子論的な理解が不十分で、適 切なガイドラインが構築されぬまま手探り状態の応用 研究が続けられていることを意味します。

光電子分光法による電子状態測定は「分子の中の電 子の姿」を量子論的に明らかにする上で極めて有効です が、分子材料に対する実験的な難しさ(試料作製方法、 光損傷や帯電回避法など測定技術)などから、電気伝導 特性の中身とリンクさせることが容易ではありませんで した。近年ようやく技術が成熟し、高感度角度分解紫外 光電子分光(ARUPS)の実現による研究成果が積み重 ねられ、有機半導体の電子の特徴が見え始めています。 分子集合体における電子と振動の協奏現象が電子の "局在性の度合い"を大きく操作し物理現象を支配します。 こうした弱い相互作用に特徴づけられる電子物性につ いて重要な話題を提供していきたいと考えています。

参考文献

1) S. Kera, H. Yamane, N. Ueno, "First principles measurements of charge mobility in organic semiconductors: Valence hole-vibration coupling in organic ultrathin films", *Prog. Surf. Sci.* 84, 135-154 (2009).

2) F. Bussolotti, S. Kera, K. Kudo, A. Kahn, N. Ueno, "Gap states in pentacene thin film induced by inert gas exposure", *Phys .Rev. Lett.* **110**, 267602-1-5 (2013).

 F.Bussolotti, J.Yang, T.Yamaguchi, Y.Nakayama, M.Matsunami, H. Ishii, N. Ueno, S. Kera, "Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors", *Nat. Commun.* 8 173-179 (2017).

4) M. Schwarze et. al., "Molecular Parameters Responsible for Thermally Activated Transport in Doped Organic Semiconductors", *Nature Materials* **18**, 242-248 (2019).

5) Y. Nakayama et. al., "Widely Dispersed Intermolecular Valence Bands of Epitaxially Grown Perfluoropentacene on Pentacene Single Crystals", *J. Phys. Chem. Lett.* **10**, 1312-1318 (2019).

Functional organic materials (FOM) have recently attracted considerable attention both for fundamental research and device applications because of peculiar properties not found in inorganics and small molecules. However the mechanisms and its origin of various device characteristics are still under debate. Scientific mysteries are raised because people have believed that electronic structure of FOM would be conserved as in an isolated molecule for solid phases. due to van der Waals interaction. To reveal characteristics of FOM the key investigation is precise experiments on the electronic structure at various interfaces, including organic-organic and organic-inorganic (metal/semiconductor) contacts. In these systems, the impacts of weak interaction on the electronic structure would appear as small intensity modulation of photoelectron-emission fine features depending on adsorption and aggregation on the surface. By recent development in the instrumental we can assess hidden fine structures in the electronic states, e.g. electron-phonon coupling, quasi-particle states, very small DOS in the HOMO-LUMO gap, narrow band dispersion and dynamic electronic polarization. To elucidate what happens for the FOM at the interface upon weak interaction, an evaluation on the wave-function spread of the electronic states is very important because the interface state of physisorbed system is described to be a delocalized molecular orbital state depending on the weak interaction (from vdW interaction to hybridization). Seeing a modification of electron wave function upon weak electronic coupling as well as strong electron-phonon coupling is central issue on our agenda.

A rich assortment in the structure of functional molecular materials and variety in the photoelectron spectral feature.

加藤政博(特任教授) KATOH, Masahiro

1981年東北大学理学部卒、 1986年東京大学大学院理 学系研究科中退、理学博士。 高エネルギー加速器研究機 構物質構造科学研究所助手 を経て2000年3月分子科学 研究所助教授、2004年1月 より分子科学研究所教授、 2019年4月より現職および 広島大学教授。

TEL: 0564-55-7206

mail: mkatoh@ims.ac.jp

1982 B.S. Tohoku University

1997 Ph.D. Tohoku University 1986 Reseach Associate,

- 1986 Reseach Associate, National Laboratory for High Energy Physics
- 2000 Associate Professor, Institute for Molecular Science

2004 Professor, Institute for Molecular Science Professor, The Graduate University for Advanced Studies

2019 Project Professor, Institute for Molecular Science Professor, Hiroshima University

(Keywords)
 Accelerator,
 Beam Physics,
 <u>As</u>trobiology

相対論的電子ビームを用いた光発生 Light Source Developments by Using Relativistic Electron Beams

分子科学研究所の保有する電子加速器UVSORは 1980年代前半に建設されたシンクロトロン光源です。周 長53m、電子エネルギー7.5億電子ボルトと小型で、テラ ヘルツ波から軟X線といったシンクロトロン光としては比 較的低エネルギー(長波長)の領域を得意とします。何度か の改造を経て、現在でも同種の装置の中では世界最 高水準の高性能を誇ります。私たちの研究グループ では、このUVSORの性能向上に取り組みながら、高エネ ルギー電子ビームからの光の放射に関する研究を行って います。

高エネルギー電子が強磁場中を走るときに発する強 力な白色光がシンクロトロン光です。テラヘルツ波からX 線に至る広大な波長域で高い指向性、偏光特性を有する光 です。このシンクロトロン光が本来持っている優れた特性 を十分に引き出すには、指向性、強度、安定性に優れた 電子ビームが必須です。最新の加速器技術の導入、独 自の技術開発により、世界最高水準の高品質電子ビー ムの生成に取り組んでいます。また、より強力なシンクロト ロン光を発生するための挿入型光源と呼ばれる装置の開 発にも取り組んでいます。

シンクロトロン光は優れた光源ですが、レーザーのよう なコヒーレントな光源ではありません。我々は、レーザー のような特質を持つシンクロトロン光、すなわち、コヒー レントシンクロトロン光の発生に関する研究を進めてきま した。シンクロトロン光を光共振器の中に閉じ込め電子 ビームと繰り返し相互作用させることでレーザー発振が 実現できます。自由電子レーザーと呼ばれる技術です。 UVSORでは安定性や強度に優れた共振器型自由電子 レーザーの開発を進めてきました。電子ビームと外部から 導入したレーザー光を相互作用させることで、テラヘルツ 波や真空紫外領域でコヒーレント光を発生することに成 功しました。また、レーザー光を電子ビームに衝突させる ことで、エネルギー可変、偏光可変、超短パルスのガンマ線 の発生に成功しました。最近では、電磁放射の時空間構造 に着目した研究に力を入れています。光渦と呼ばれる螺 旋状の波面を持つ光やベクトルビームと呼ばれる偏光が 場所により変化する光など、空間的な構造を持つ放射光 の研究を進めています。また、放射光の波の時間構造を 利用し、原子の量子状態を制御する研究にも着手しました。

相対論的電子からの光の放射、放射された光の物質と の相互作用は、基礎物理学の対象としても興味深く、ま た、天体物理学、プラズマ物理学から物質科学、生命科 学、アストロバイオロジーなど様々な分野において重要 な役割を果たします。我々は、幅広い分野の研究者と協 力して、光の物理の探求を進めています。 UVSOR is a synchrotron light source providing low energy synchrotron light ranging from terahertz wave to soft X-rays. Although it was constructed in 1980's, its performance is still in the world top level. This is the result of the continuous effort on improving the machine. Our research group has been developing accelerator technologies toward producing bright and stable synchrotron light, such as high brightness electron beam optics, novel insertion devices or state-of-the-art accelerator technologies.

We have been also developing novel light source technologies toward producing photons with excellent properties, such as free electron laser, coherent synchrotron radiation and laser Compton gamma-rays. We are also investigating beam physics which would be the basis of the novel light source technologies. We have demonstrated producing optical vortex beam and optical vector beam from the synchrotron. We are exploring their applications as novel probes for material sciences and their possible roles in nature.

Radiation from relativistic electrons and its interaction with matters are also interesting as subjects of basic physics, astrophysics, plasma physics, materials science, life science including astrobiology. In cooperation with researchers in a wide range of fields, we are exploring new research areas.

UVSOR-III Electron Storage Ring and Synchrotron Radiation Beam-lines.

The circumference is 53m. The electron energy is 750 MeV. Electrons are circulating in the storage ring at almost the speed of light and radiate intense vacuum ultraviolet light.

参考文献

1) M. Katoh, M. Fujimoto, H. Kawaguchi, K. Tsuchiya, K. Ohmi, T. Kaneyasu, Y. Taira, M. Hosaka, A. Mochihashi, Y. Takashima, "Angular Momentum of Twisted Radiation from an Electron in Spiral Motion", *Phys. Rev. Lett.* **118**, 094801 (2017).

2) Y. Hikosaka, T. Kaneyasu, M. Fujimoto, H. Iwayama, M. Katoh, "Coherent control in the extreme ultraviolet and attosecond regime by synchrotron radiation", *Nat. Commun.* **10** 4988 (2019).

平 義隆(准教授) TAIRA, Yoshitaka

2007年名古屋大学理学部 物理学科卒、2009年名古屋 大学大学院理学研究科博士 課程前期課程修了、2011年~ 2012年日本学術振興会特別 研究員(DC2)、2012年名古屋 大学大学院工学研究科博士 課程後期課程修了、2012年 産業技術総合研究所研究員、 2016年~2018年日本学術振 興会海外特別研究員、2018年 産業技術総合研究所主任研究 員を経て2020年4月より現職。 TEL: 0564-55-7400

mail: yostaira@ims.ac.jp

2007 B.S. Nagoya University

2009 M.S. Nagoya University

2011- Research Fellowship 2012 for Young Scientists, Japan Society for Promotion of Science (JSPS)

2012 Ph.D. Nagoya University

- 2012 Research Scientist, National Institute of Advanced Industrial Science and Technology (AIST)
- 2016-Overseas Research 2018 Fellowships, Japan Society for Promotion of Science (JSPS)

2018 Senior Research Scientist, National Institute of Advanced Industrial Science and Technology (AIST)

2020 Associate Professor, Institute for Molecular Science

〈Keywords〉

Electron Beams, Synchrotron Radiation, Gamma-Rays, Positrons 電子ビーム制御研究部門 Beam Physics and Diagnostics Research

高エネルギー電子ビームを用いた 新規量子ビーム源開発と利用研究

Development and Utilization of Novel Quantum Beam Sources Using a High Energy Electron Beam

人間の目に見える可視光以外にも世の中には沢山の 光が存在します。例えば携帯電話やテレビ放送に使われて いる波長の長い電波、可視光よりも波長の短い紫外線、 レントゲン写真で有名な物を透過するX線やガンマ線な どが挙げられます。これらの光を人工的に発生するには 様々な方法がありますが、私たちのグループでは「電子」 を用いた方法を使っています。分子科学研究所にある UVSORと呼ばれる装置は、電子を光の速さの 99.9999768%まで加速することができます。このほぼ光 速の電子を磁石やレーザーを使ってその軌道を僅かに変 えることで様々な波長帯の光を発生することができます。

光には、波長の他に時間的な長さ(パルス幅)や光の 電場の偏り具合を表す偏光といった特徴があります。 私たちのグループでは、これまでに無い新しい特徴を 持つ光をどうすれば発生できるのか、そしてその新しい 特徴を活用した利用法を探索する研究を行っています。

一例を挙げると、10兆分の1秒の極めて短時間のパ ルス幅をもつガンマ線を発生する研究を行っています。 ガンマ線はセシウムなどの放射性同位元素から発生す る事が良く知られていますが、そういった放射性同位元 素からは到底発生することができない特徴をもつガン マ線が高エネルギー電子ビームを用いると発生可能に なります。ガンマ線からは対生成と呼ばれる現象によっ て電子とその反粒子である陽電子が発生します。私たち のグループでは、この陽電子を用いて金属材料や高分 子材料内部に存在するナノメートルの欠陥や空隙を分 析する技術を開発し、材料の特性改善に関する研究を 行っています。

Fig.1: Schematic illustration of 90-degree laser Thomson scattering.

参考文献

1) Y. Taira, M. Adachi, H. Zen, T. Tanikawa, N. Yamamoto, M. Hosaka, Y. Takashima, K. Soda, M. Katoh, "Generation of energy-tunable and ultra-short-pulse gamma ray via inverse Compton scattering in an electron storage ring", *Nucl. Instr. Meth. A*, **652** (2011) 696.

2) Y. Taira, H. Toyokawa, R. Kuroda, N. Yamamoto, M. Adachi, S. Tanaka, M. Katoh, "Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses", *Rev. Sci. Instr.*, **84** (2013) 053305.

Our group develop new electromagnetic wave sources using a high energy electron beam. In the UVSOR-III electron storage ring at the Institute for Molecular Science, a 750-MeV electron beam can be generated. Electromagnetic waves in a wide frequency range from ultraviolet waves to gamma-rays are generated by interacting the electron beam with magnetic fileds and lasers.

Laser Thomson (Compton) scattering is a method to generate a high energy gamma-ray by the interaction between a high energy electron and a laser. We have developed ultra-short pulsed gamma-rays with the pulse width of sub-ps to ps range by using 90-degree laser Thomson scattering. We applied this ultra-short pulsed gamma-rays to gamma induced positron annihilation lifetime spectroscopy (GiPALS). A positron is an excellent probe of lattice defects in solids and of free volumes in polymers at the sub-nm to nm scale. GiPALS enables defect analysis of a thick material in a few cm because positrons are generated throughout a bulk material via pair production. Our group is conducting research on improving the properties of the material by using GiPALS.

Fig.2: Positron annihilation lifetime spectrum of stainless steel for positron defect measurements (5607-a) supplied by National Metrology Institute of Japan (NMIJ). Measured positron lifetime 108 ps agrees well with the indicative value.

3) Y. Taira, T. Hayakawa, M. Katoh, "Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light", *Scientific Reports*, **7** (2017), 5018.

4) Y. Taira, M. Katoh, "Gamma-ray vortices emitted from nonlinear inverse Thomson scattering of a two-wavelength laser beam", *Phys. Rev. A*, **98** (2018) 052130.

5) Y. Taira, M. Katoh, "Generation of optical vortices by nonlinear inverse Thomson scattering at arbitrary angle interactions", *The Astrophysical Journal*, **860** (2018) 45.

田中 清尚(准教授) TANAKA, Kiyohisa

2000年東京大学理学部卒業、 2005年東京大学大学院理学 研究科博士課程修了、理学 博士。米国スタンフォード大学 及びローレンスバークレー 国立研究所博士研究員、大阪 大学助教、特任准教授を経て 現職。

TEL: 0564-55-7202

mail: k-tanaka@ims.ac.jp

2000 B.S.The University of Tokyo

2005 Ph.D. The University of Tokyo

> Postdoctoral Fellow, Stanford University and Lawrence Berkeley National Laboratory

2008 Assistant Professor, Osaka University

2013 Associate Professor, Osaka University

2014 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

$\langle Keywords \rangle$

Strongly Correlated Electron System, Synchrotron Light, Photoemission ■光物性測定器開発研究部門 Advanced Solid State Physics

電子構造の直接観測による 固体物性の発現機構の解明

Angle-Resolved Photoemission Study on Strongly Correlated Electron Materials

近年、強相関電子系とよばれる物質群が話題を集め ています。これらの物質中では、電子の密度が非常に高 いため電子同士が互いに強く相互作用しあっていて、固 体物理学の基本理論であるバンド理論では電子の運 動を説明できません。そして従来理論の予想を遥かに超 えたきわめて多彩で面白い物性、例えば高温超伝導、 巨大磁気抵抗、非フェルミ液体などが出現することが 最近の研究でわかってきました。このような、強相関 電子系の物質は、電子の電荷・スピン・軌道を制御する ことで、これまでのエレクトロニクスを凌駕するスピン トロニクス、強相関エレクトロニクスの電子デバイスに なる可能性を秘めており次世代のエレクトロニクスを 担う物質として期待されています。

これらの物性は、物質のフェルミ準位のごく近傍の 電子状態が担っていて、その電子状態を観測することは 物性発現機構の理解、そして新物性の発見には欠かせ ません。われわれのグループは、UVSOR-IIのシンクロ トロン光を使って、強相関伝導系物質の分光実験を行 うことで、電子状態を直接観測する研究を行っています。 シンクロトロン光は、テラヘルツ・遠赤外からX線まで 切れ目のない連続な光であり、かつ高輝度でかつ偏光 特性に優れており、実験室とは違ったまったく新しい 分光実験を行うことができます。また強相関電子系 物質では、電子の電荷に加えて、スピンが物性に大きく 寄与します。そこで世界に先駆けて、固体中の電子の 運動だけでなく、そのスピンの情報まで同時に取得で きる分光装置の開発を行っています。

このように新奇機能性を生み出す電子構造を観測す るためのシンクロトロン光を使った新しい分光法の開 発し、様々な物質の物性の発現機構の解明を目指して います。

参考文献

 K. Tanaka, W.S. Lee, D.H. Lu, A. Fujimori, T. Fujii, Risdiana, I. Terasaki, D.J. Scalapino, T.P. Devereaux, Z. Hussain, Z.-X. Shen, "Distinct Fermi-momentum- dependent energy gaps in deeply underdoped Bi2212." *Science* **314**, 1910-1913 (2006).
 W.S. Lee, I.M. Vishik, K. Tanaka, D.H. Lu, T. Sasagawa, N. Nagaosa, T.P. Devereaux, Z. Hussain, Z.-X. Shen, "Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212." *Nature* **450**, 81-84 (2007). Strongly correlated electron materials has attracted more attentions in the last few decades because of their unusual and fascinating properties such as high-Tc superconductivity, giant magnetoresistance, heavy fermion and so on. Those unique properties can offer a route toward the next-generation devices. We investigate the mechanism of the physical properties as well as the electronic structure of those materials by using angle-resolved photoemission spectroscopy (ARPES), a powerful tool in studying the electronic structure of complex materials, based on synchrotron radiation.

High energy resolution angle-resolved photoemission spectroscopy beamline BL7U at UVSOR synchrotron.

物質分子科学のための新しい分光法の開発

Exploitation of Novel Spectroscopic Methods for Material and Surface Science

現代の物質科学は高性能だけでなく安全安心などさま ざまな観点から調和のとれた物質材料の創製を求められ ており、物質材料・素子の特性を詳細に評価・解析し、より よい物質材料設計を行う必要があります。そのため、物質 材料を解析する手法の空間分解能や時間分解能がます ます求められています。我々は、主に大型加速器から放射 されるX線(シンクロトロン放射光)を用いた分光学的 手法に基づいた新しい測定手法の開発とその応用に取り 組んでいます。

我々は、2017年に大気圧下でのX線光電子分光測定に 世界で初めて成功しました。光電子分光法は、通常高真空 下での測定が必須ですが、エネルギーの大きい硬X線を 用いることなどで、1気圧までの測定が可能な光電子分光 装置が開発できました。これを用いて、燃料電池の動作下 での状態解析により性能の失活機構や被毒の原因究明 などを行っています。

また、X線自由電子レーザーを用いた高速時間分解軟X 線吸収分光測定を手掛けており、100フェムト秒以下の時 間分解能で磁性薄膜の高速磁化反転ダイナミクス解析 を行い、元素による磁化反転時間の相違の検証などに成 功しています。 For the developments of novel functional materials, it is quite important to exploit simultaneously new analytical methods based on advanced technology. Novel materials and devices often require spatial and/or time resolved analysis to optimize their qualities. In our group, we have been exploiting spectroscopic methods for material and surface science using mainly synchrotron radiation (SR) and partly lasers.

The present first subject is the exploitation of ambient pressure hard x-ray photoelectron spectroscopy (HAXPES) and its application to polymer electrolyte fuel cells (PEFC) under working conditions. In 2017, we succeeded in the HAXPES measurement under real ambient pressure of 10⁵ Pa for the first time in the world. We are investigating working PEFC by the technique for the elucidation of degradation and/or poisoning mechanisms of PEFC to improve its performance with longer life time.

The second subject is the ultrafast (<100 fs) time resolved soft x-ray absorption measurements of spin dynamics in magnetic thin films in order to understand element-specific magnetization reversal mechanisms.

参考文献

1) "Quick Operando Ambient Pressure Hard X-ray Photoelectron Spectroscopy for Reaction Kinetic Measurements of Polymer Electrolyte Fuel Cells" T. Nakamura, Y. Takagi, S. Chaveanghong, T. Uruga, M. Tada, Y. Iwasawa And T. Yokoyama, *J. Phys. Chem. C* **124**, 17520 (2020).

2) "X-ray photoelectron spectroscopy under real ambient pressure conditions" Y. Takagi, T. Nakamura, L. Yu, S. Chaveanghong, O. Sekizawa, T. Sakata, T. Uruga, M. Tada, Y. Iwasawa and T. Yokoyama, *Appl. Phys. Exp.* **10**, 076603 (2017).

 "Dynamics of Photoelectrons and Structural Changes of Tungsten Trioxide Observed by Femtosecond Transient XAFS" Y. Uemura, D. Kido, Y. Wakisaka, H. Uehara, T. Ohba, Y. Niwa, S. Nozawa, T. Sato, K. Ichiyanagi, R. Fukaya, S. Adachi, T. Katayama, T. Togashi, S. Owada, K. Ogawa, M. Yabashi, K. Hatada, S. Takakusagi, T. Yokoyama, B. Ohtani, and K. Asakura, *Angew. Chem. Int. Ed.* 55, 1364 (2016).

4) "Anharmonicity and Quantum Effects in Thermal Expansion of an Invar Alloy" T. Yokoyama and K. Eguchi, *Phys. Rev. Lett.* **107**, 065901 (2011).

5) "Magnetic circular dichroism near the Fermi level"T. Nakagawa and T. Yokoyama, *Phys. Rev. Lett.* 96, 237402 (2006).

Ambient pressure hard x-ray photoelectron spectroscopic system. (a) Apparatus installed at SPring-8 Beamline 36XU. (b) Au 4f HAXPES of Au(111) at a real ambient pressure of 10^5 Pa. (c) S 1s HAXPES of the anode Pt and Pt₃Co electrodes of aged (fresh) and degraded polymer electrolyte fuels cells under working conditions. The Pt₃Co electrode is found to be more tolerant against S than the Pt electrode. (d) Quick HAXPES measurements of the cathode Pt of the polymer electrolyte fuels cells upon abrupt change of the cathode-anode voltage from 0.4 to 1.2 V. The time resolution is 500 ms.

横山 利彦(教授) YOKOYAMA, Toshihiko

1983年東京大学理学部卒業、 1987年同大学大学院理学系 研究科博士課程中退、理学 博士。1987年広島大学理学部 助手、1993年東京大学大学院 理学系研究科助手、1994年 同講師、1996年同助教授を 経て、2002年1月より現職。 2007年4月~2013年3月分子 スケールナノサイエンスセン ター長、2011年4月~現在 物質分子科学研究領域主幹、 2014年9月~2016年3月、 2018年4月~現在機器セン ター長併任。 TEL: 0564-55-7345

- FAX: 0564-55-7448
- 1983 B.S.The University of Tokvo

mail: yokoyama@ims.ac.jp

- 1985 M.S. The University of Tokyo
- 1990 Ph.D. The University of Tokyo
- 1987 Research Associate, Hiroshima University
- 1993 Research Associate, The University of Tokyo
- 1994 Lecturer, The University of Tokyo

1996 Associate Professor, The University of Tokyo

2002 Professor, Institute for Molecular Science

> Professor, The Graduate University for Advanced Studies

> > Keywords

X-Ray Absorption Spectroscopy,

Surface & Thin Film Magnetism,

Ambient Pressure Hard X-Ray Photoelectron Spectroscopy

杉本 敏樹(准教授) SUGIMOTO, Toshiki

2007年京都大学理学部卒、 2011年東京大学大学院工学 系研究科物理工学専攻博士 課程修了、工学博士。日本学 術振興会特別研究員(DC2・ PD)、京都大学大学院理学 研究科化学専攻助教、JST さきがけ研究員を経て現職。 2016年科学技術振興機構 さきがけ研究者(革新的触 煤領域)兼務(2020年3月 まで)。2019年科学技術 振興機構さきがけ研究者 (革新的光技術領域)兼務 (2023年3月まで)。

TEL: 0564-55-7280

mail: toshiki-sugimoto@ims.ac.jp

2007 B.S., Kyoto University

2011 Ph.D., The University of Tokyo (Doctor of Engineering)

> Research Fellowship for Young Scientists (DC2·PD), Japan Society for the Promotion of Science

2012 Assistant Professor, Kyoto University

2016-PRESTO Researcher 2020 (innovative catalysis), Japan Science and Technology Agency

2018-Associate Professor, Institute for Molecular Science

2019-PRESTO Researcher (innovative photonic technology), Japan Science and Technology Agency

Keywords

Water Molecule,

Molecular Spectroscopy

Surface Science

■電子構造研究部門 Electronic Structure

固体表面における分子集合体の特異的な構造物性・化学的機能・量子ダイナミクスの探求

Unique Structures, Physicochemical Properties and Quantum Dynamics of Molecular Aggregates at Solid Surfaces

固体の表面は固体の内部とは異なる構造を有している ため、物性や化学機能、量子ダイナミクス等を支配する 電子の状態は表面と内部とでは全く異なったものになり ます。この固体表面は気相や液相にある原子・分子が固 体と出会う重要な場を提供しています。原子や分子が表 面に吸着して固体と相互作用する際には、気相や液相で は発現しない新奇な物性や化学機能が創発されること がしばしばあります。こうした固体表面における特異な現象 は、我々の身近なところでは「触媒・腐食・接着などの化学 反応」や「光触媒・燃料電池・太陽電池などのエネルギー 変換」において実生活とも密接に関わっています。

私たちは、水素、メタン、水分子などの身近な軽分子に 興味を持ち、実用物質の不均一な表面やナノレベルで 構造を規定・制御したモデル固体表面に吸着・凝集した 分子集合体がどのようなメカニズムで特異的な構造物 性や化学機能、量子ダイナミクスを発現させているのか を解明することを目指しています1-50。多体の相互作用に よって発現する複雑な固体表面現象を素過程のレベル から微視的に明らかにするために、赤外光や可視光に加 えて紫外光やX線といった様々なエネルギー領域の光 (連続光・パルスレーザー光)や電子線、走査型顕微鏡を 用いた最先端の表面分光研究・物理化学研究に挑戦し ています(Figs.1, 2)。また、従来の実験方法では観測自 体が不可能であった"水素(水素結合ネットワーク中のプ ロトン)の局所構造"を可視化するための"革新的な表面 顕微分光計測法"を開発することにも世界に先駆けて挑 戦しています。

水分子の集合体が関与する固体表面現象は、物理学・ 化学・工学・生物学・地学といった広い範囲の分野にお いて基礎・応用の両観点で極めて重要な研究対象です。 私たちは、22世紀につながる人類の知見・基礎学理を構 築することを目指し、このように学術的・実学的に興味深 い固体表面現象をナノレベルの目線で解き明かす基礎 研究を展開しています。

参考文献

 K. Shirai, G. Fazio, T. Sugimoto et al., Water-assisted hole trapping at highly curved surface of nano-TiO₂ photocatalyst, *J. Am. Chem. Soc.* **140**, 1415 (2018).
 T. Sugimoto et al., Inelastic Electron Tunneling Mediated by Molecular Quantum Rotator, *Phys. Rev. B* **96**, 241409(R) (2017).

3) T. Sugimoto et al., Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in heteroepitaxial ice film, *Nature Physics* 12, 1063 (2016).
4) K. Shirai, T. Sugimoto et al., Effect of Water Adsorption on Carrier Trapping Dynamics at the Surface of Anatase TiO₂ Nanoparticles. *Nano Lett.* 16, 1323 (2016).

Surfaces and interfaces are the places where the spatially isolated electrons in molecules meet delocalized ones in substrates such as metals. Under such circumstances, molecules behave very differently from those in gas and liquid phases. Unexpected molecular processes sometimes take place at surfaces and interfaces. There are many important applications where surfaces/interfaces play an important role, such as photovoltaic application for energy conversion and catalytic application for chemical reaction. These all depend on specific many-body complex interactions that are not always fully understood. Our ultimate aim is to elucidate such cooperative interactions at the molecular level.

By using state-of-the-art molecular spectroscopy in combination with sophisticated surface scientific techniques, we have elucidated unique structures, physical properties, chemical functions, and quantum dynamics of hydrogen, water molecules and their assemblies at surfaces/interfaces of solid materials¹⁻⁵⁾. In addition, we are challenging to develop innovative microspectroscopy with atomic resolution for directly observing the local structure of protons in the unique hydrogen-bond network of water molecular aggregates at solid surfaces/interfaces.

Fig. 1 Infrared-visible sum-frequency-generation (SFG) spectroscopy of water molecules on solid surface ³⁾.

Fig. 2 Unimolecular inelastic-electron-tunneling (IET) spectroscopy of quantum rotator on solid surface ².

5) T. Sugimoto et al., Nuclear Spin Dynamics of Molecular Hydrogen Adsorbed on Solid Surfaces –Interdisciplinary Surface Electromagnetic Process-. *J. Phys. Soc. Jpn.* **71**, 668 (2016).

平本 昌宏(教授) HIRAMOTO, Masahiro

1984年大阪大学大学院基礎 工学研究科化学系博士課程 中退、84年分子科学研究所 文部技官、88年大阪大学工学 部助手、97年大阪大学大学 院工学研究科准教授を経て、 2008年より現職。専門:有機 半導体の光電物性と太陽電池、 デバイス応用。

テハイ人応用。

TEL: 0564-59-5537

mail: hiramoto@ims.ac.jp

1984 Osaka University, Faculty of Engineering Science

1986 Ph.D. (Engineering) Osaka University

1984 Institute for Molecular Science, Technical Associate

1988 Faculty of Engineering, Osaka Univ., Research Associate

1997 Faculty of Engineering, Osaka Univ., Associate Professor

2008 Professor, Institute for Molecular Science

> Professor, The Graduate University for Advanced Studies

〈Keywords〉

Organic Semiconductors, Organic Solar Cells, ppm-Doping 有機太陽電池 Organic Solar Cells

エネルギー問題の解決は科学者の責務です。特に、 我が国において、エネルギー資源がない状況は、明治 維新から現在に至るまで全く変わっておらず、先の大 戦、3.11の原子力災害のような、悲劇的で大きな歴史 の転換は、常にエネルギーをめぐって起こっています。 太陽電池は我が国のエネルギー自給の切り札となり ます。また、「エネルギーを制するものは世界を制す る」との言葉にあるように、石油に代わって、21世紀の 世界の基幹産業になります。

以上の考えに基づき、平本グループでは、次世代太 陽電池の有力候補である、有機太陽電池の研究を 行っています。

有機太陽電池は、最近スマホ画面にもなっている有 機ELの太陽電池版です。有機太陽電池は、軽量なフ レキシブルシートの形で、印刷によって新聞のように 大量安価に作れ、屋根、壁、窓にはりつけたり、自動車 にペンキのように塗って使うなど、これまでのシリコン 太陽電池とはちがった全く新しい使い方になります。

平本は、1991年に、有機ブレンド接合(図1)のコン セプト¹¹を世界に先がけて提案し、有機太陽電池はこ の構造をつかっています。また、1990年に、有機タン デム接合を世界で初めて提案し²¹、近年の最高変換効 率は有機タンデム接合セルによるものです。

有機太陽電池の分野でブレイクスルーを起こすに は、有機半導体の物性物理学の深い理解に基づいて、 太陽光によって生じる電流、電圧を大きくしていく必 要があります^{3),5)}。最近、有機単結晶太陽電池の研究で 大きな成果を発表しました⁴⁾。若い人たちが、この研究 に加わっていただくことを期待しています。

参考文献

 M. Hiramoto , H. Fujiwara , M. Yokoyama, "Three-layered organic solar cell with a photoactive interlayer of codeposited pigments", *Appl. Phys. Lett.*, **58**, 1062-1064 (1991).
 M. Hiramoto, M. Suezaki, M. Yokoyama, "Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell", *Chem. Lett.*, **1990**, 327-330 (1990).

3) M. Hiramoto, M. Kikuchi, S. Izawa, "Parts-per-Million-Level Doping Effects in Organic Semiconductor Films and Organic Single Crystals", *Adv. Mater.*, **30**, 1801236 (15 pages) (2018) (Invited Progress Report).

4) C. Ohashi, S. Izawa, M. Hiramoto et al., "Hall effect in bulk-doped organic single crystal", *Adv. Mater.*, **29**, 1605619 (2017).

5) N. Shintaku, M. Hiramoto, S. Izawa, "Effect of trap-assisted recombination on open-circuit voltage loss in phthalocyanine/ fullerene solar cells", *Org. Electron.*, **55**, 69-74 (2018).

Organic solar cells have been intensively studied due to many advantages like flexible, printable, light, low-cost, fashionable, etc. In 1991, Hiramoto invented "blended junction" (Fig. 1)¹⁾ and "tandem junction"2) of organic solar cells, which are fundamental concepts in the present organic solar cells. We have been focused on the establishment of "bandgap science for organic solar cells."³⁾ We believe that the following features are indispensable. (i) A ppm-level doping strategy should be applied to sub-ppm purified organic semiconductors for the complete removal of uncontrollable doping by oxygen from the air. (ii) Complete pn-control, i.e., the observation that every single and blended organic semiconductor shows both *n*- and *p*-type characteristics by impurity doping alone, should be achieved. (iii) Doping in the bulk of organic single crystals without grain boundaries is necessary for precise clarification of the nature of the doping effects.

Recently, we have succeeded the fabrication of ppm-level doped organic single crystals and measurements of their Hall effects using our original ultra-slow deposition technique at a rate of 10⁻⁹ nm/s (Fig. 2)⁴⁾. This is a foundation for the first organic single crystal solar cells.

We fervently hope that young researchers will take up the challenge of working in the interdisciplinary field of organic solar cells to help develop the next generation of cells for renewable energy.

Fig. 1 Concept of blended junction.

Fig. 2 ppm-doped organic single crystal (AFM) formed by ultra-slow deposition of 10⁻⁹ nm/s having a rotating shutter.

西村勝之(准教授) <u>NISHIM</u>URA, Katsuyuki

1994年兵庫県立姫路工業 大学理学部(現・兵庫県立大学) 卒業、1999年同大学大学院 理学研究科博士課程終了・理学 博士。米国立高磁場研究所、 フロリダ州立大学博士研究員、 横浜国立大学工学研究院助手 を経て、2006年4月より現職。 TEL: 0564-55-7415 FAX: 0564-55-7415

mail: nishimur@ims.ac.jp

1994 B.S. Himeji Institute of Technology

1999 Ph.D. Himeji Institute of Technology

1999 Postdoctoral Fellow, Florida State University, National High Magnetic Field Laboratory

2001 Assistant Professor, Yokohama National University

2006 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

(Keywords)
 Solid State NMR,
 Biomolecules,
 Developments

固体核磁気共鳴法による生体分子・分子材料の解析 Solid-State NMR for Molecular Science

核磁気共鳴法(NMR)は原子核の持つ磁気モーメント が磁場中で小さい磁石として振舞う性質を利用して、測 定対象にラジオ波領域の電磁波を照射することにより 非破壊で物質内部の分子の詳細な構造や運動性に関す る原子分解能での情報を得ることができます。固体 NMRは物理学者によってその基礎が築かれ、物理化学 者によって化学的情報を得る手段として方法論が発展 してきました。固体NMRは結晶や液晶から、粉末のよう なアモルファス試料や粘性の高い液状試料まで非常に 多様な物質に対して適用可能であり、特に生体分子への 適用が注目されています。

当研究グループでは分子に関する様々な情報を得る ための新規固体NMR測定法の開発を行っています。 NMRで観測する内部相互作用には、静磁場に対する分 子の相対角度を変化させる空間項の変調および、特定 の強度、時間間隔でのラジオ波照射により核スピン角運 動量項への外部摂動を与えることが可能です。そのた め、これらの外部摂動を適切に組み合わせる実験をデザ インして特定の内部相互作用を選択的に消去、復活させ ることが可能です。それら内部相互作用の精密な観測、 解析により原子間距離や角度情報等の分子の幾何情報 を得ることが出来ます。さらに緩和時間やスペクトル線 形解析から特定の時間領域の分子運動性を同定するこ とが可能です。

これまで、分子の立体構造決定に有効な精密原子間 距離測定法の原理的な問題の解析¹⁾、低発熱型感度向 上法²⁾、および角度測定法の開発³⁾を行いました。さらに 脂質との相互作用により機能する膜タンパク質として、 インフルエンザウイルスA由来の⁺Hチャンネル⁴⁾、膜表 在性タンパク質フォスフォリパーゼC-δ1脂質結合ドメイン の機能発現機構解析⁵⁾、アルツハイマー病に関与する アミロイドβの脂質膜上で形成される会合体の構造解析⁶⁾ などを行ってきました。さらに絹⁷⁾などの生体高分子材料、 合成高分子複合体の構造解析⁸⁾など所内外の複数の 研究機関と共同研究も行っています。 In order to elucidate functions of molecules, characterizations of the molecules are essential. There are varieties of important molecules, which are insoluble to any solvents and functional at amorphous state. Solid-state NMR enables to obtain variety of information at atomic resolution without damages of molecules and significant restrictions. Thus, solid-state NMR is one of the essential tools for the characterizations of those molecules.

We have been working for methodology developments of solid-state NMR such as the analyses of error factors of precise distance measurements¹⁾, the developments of techniques for sensitivity enhancement without sample heating²⁾ and 2D correlation techniques to obtain orientational information of molecules³⁾. In addition, as studies for structural biology, we have been working for functional and structural characterizations of membrane proteins and peptides such as ⁺H channel from influenza virus A4, a peripheral membrane protein of phospholipase C-δ1 PH domain⁵⁾, and amyloid-β oligomers induced on lipid membranes⁶⁾. Furthermore, as studies for material science, we have been working for characterizations of variety of molecular materials such as silk7, and supramolecules based on synthetic polymers⁸⁾ through collaborations with several research groups.

Outline of our studies

参考文献

1) K. Nishimura*, A. Naito."REDOR in Multiple Spin System", *Modern Magnetic Resonance*, Springer, The Netherlands (2006).

 K. Nishimura*, A. Naito, Chem. Phys. Lett. 380, 569-576 (2003).

3) K. Nishimura^{*}, A. Naito, *Chem. Phys. Lett.* **402**, 245-250 (2005).

4) K. Nishimura, S. Kim, L. Zhang, T. A. Cross, *Biochemistry.* 41, 13170-13177 (2002).

5) N. Uekama, T. Aoki, T. Maruoka, S. Kurisu, A. Hatakeyama,

S. Yamaguchi, M. Okada, H. Yagisawa, K. Nishimura*,
S. Tuzi*, *Biochim. Biophys. Acta* **1788**, 2575-2583 (2009).
6) M. Yagi-Utsumi, K. Kato, and K. Nishimura*, *PlosONE* **11**, 0146405 (1-10) (2016).

T. Asakura, T. Ohota, S. Kametani, K. Okushita, K. Yazawa,
 Y. Nishiyama, K. Nishimura, A. Aoki, F. Suzuki, H. Kaji,
 A. Ulrich, M. Williamson, *Macromolecules* 48, 28-36 (2015).
 N. Ousaka, F. Mamiya, Y. Iwata, K. Nishimura, and
 E. Yashima, *Angew. Chem. Int. Ed.* 56, 791-795 (2017).

小林 玄器(准教授) KOBAYASHI, Genki

2006年金沢大学工学部卒業、 2008年東京工業大学総合理 工学研究科修士課程修了、 2010年博士課程修了、博士 (理学)。2010年同産学官連携 研究員、2011年神奈川大学 助教、2013年分子科学研究所 特任准教授(若手独立フェ ロー)を経て、2018年4月より 現職。2012年10月~2016年 3月科学技術振興機構さき が1)「新物質科学と元素戦略」 さきがけ研究者兼任。

TEL: 0564-55-7440

mail: gkobayashi@ims.ac.jp

2006 Kanazawa University

2008 Tokyo Institute of Technology, Master of Engineering

2010 Tokyo Institute of Technology, Doctor of Science

> Postdoctoral Fellow, Tokyo Institute of Technology

2011 Assistant Professor, Kanagawa University

2012 PRESTO Researcher (Additional post), Japan Science and Technology Agency (-2016)

2013 Research Associate Professor, Institute for Molecular Science

2018 Associate Professor, Institute for Molecular Science

Keywords

Solid State Ionics, Solid State Chemistry,

Electrochemical Device

■分子機能研究部門 Molecular Functions

次世代電気化学デバイスの 創出に向けた新物質探索 Materials Science for Creation of Novel Electrochemical Devices

持続可能なエネルギー社会の実現に向け、電気化学 反応を利用した蓄電・発電の重要性が高まっています。 現在、リチウム二次電池や燃料電池を越える次世代の エネルギーデバイスを目指した研究が盛んにおこなわ れていますが、実現には、既存の研究開発と並行して新 物質創製に基づいた新規デバイスを開発する試みが 必要になります。これまでH⁺, O²⁻, Li⁺, Na⁺などのイオン を利用した燃料電池や蓄電池の開発が行われてきまし たが、新たなイオンを電荷担体とする電極や固体電解 質材料が出現すると、全く新しい作動原理をもつエネル ギーデバイスの可能性が拓かれます。我々のグループ では、水素のアニオンであるヒドリド(H⁻)に着目し、H⁻ 導電性を有する固体電解質や電極材料の探索をおこ なっています。

一般的に、イオンの動き易さを決める代表的な指標 として、価数、大きさ、潰れやすさ(分極率)があり、1価 で適度なイオン半径を持ち、分極率の大きなH-は高速 イオン導電に適しています。また、H-は、二次電池への 応用が検討されているMgと同程度の酸化還元電位 (E° = -2.25 V vs. SHE)を有することから、H-を電荷 担体に利用し、H-の酸化還元電位を活かした蓄電・発 電反応を構築することができれば、高エネルギー密度 が得られると期待できます。また、1価のイオンでありな がらH-からH+への二電子反応が可能な唯一のイオン であり、様々な化学反応に応用できる可能性もあります。 最近、我々の研究グループでは、H-とO2-が結晶格子 内に共存する酸水素化物という物質群を対象に物質 探索を行い、H-導電性の固体電解質として機能する La2-x-ySrx+yLiH1-x+yO3-y(以下LSLHO)の開発に成功し ました。さらに、LSLHOを固体電解質に用いることで H-を電荷担体とする電池反応を世界に先駆けて見い だし、H-導電を利用した電気化学デバイスの開発可能性 を示しました。我々は、この研究結果を基に、H-が結晶内 を高速で拡散するH-超イオン導電体などの新物質の 探索やH-導電を活用した新型電気化学デバイスの開 発をおこなうと同時に、H-の導電機構の解明など、H-導電体に関する学理を構築する研究に挑んでいきます。 参考文献

1) H. Nawaz, F. Takeiri, A. Kuwabara, M. Yonemura, G. Kobayashi^{*}, "Synthesis and H⁻ conductivity of a new oxyhydride Ba₂YHO₃ with anion-ordered rock-salt layers" *Chem. Commun.*, **56**, 10373-10376 (2020).

2) F. Takeiri, A. Watanabe, A. Kuwabara, H. Nawaz, N. Ayu,
M. Yonemura, R. Kanno and G. Kobayashi*, "Ba₂ScHO₃:
H⁻ Conductive Layered Oxyhydride with H⁻ Site Selectivity," *Inorg. Chem.*, 58, 4431-4436 (2019).

3) N. Matsui, G. Kobayashi*, K. Suzuki, A. Watanabe,

Chemical energy conversion/storage using electrochemical devices such as fuel cells and batteries will become increasingly important for future sustainable societies. Recently, many research for advanced electrochemical devices beyond Li secondary batteries and fuel cells have been actively carried out all over the world. A breakthrough of core materials used as electrodes and electrolytes is required to open up the frontier in the electrochemical devices. An injection of new ion conduction phenomenon is one of the dominant candidates for the creation of novel battery systems. We focus on hydride ions (H-) as a candidate of charge carriers for energy devices. In this context, we aim to synthesize new materials possessing hydride ion (H⁻) conductivity, and to create a novel battery system utilizing both the $H^{\scriptscriptstyle -}$ conduction phenomenon and the $H^{\scriptscriptstyle -}/H_2$ redox reaction.

Crystal structures of La_{2-xy}Sr_{xy}LiH_{1-xy}O_{3-y} (x = 0, y = 0, 1, 2). The coordination environment around lithium ions continuously changes with a change in the O/H⁻ ratio. The four axial sites of the Li-anion octahedra (anion sites in Li-anion planes perpendicular *s*-axis) prefer to be occupied by H⁻.

A. Kubota, Y. Iwasaki, M. Yonemura, M. Hirayama, R. Kanno*, "Ambient pressure synthesis of La₂LiHO₃ as a solid electrolyte for a hydrogen electrochemical cell," *J. Am. Ceram. Soc.*, **102**, 3228-3235 (2019).

4) Y.Iwasaki, N.Matsui, K.Suzuki, Y.Hinuma, M. Yonemura, G. Kobayashi, M. Hirayama, I. Tanaka and R. Kanno*, "Synthesis, crystal structure, and ionic conductivity of hydride ion-conducting *Ln*₂LiHO₃ (*Ln* = La, Pr, Nd) oxyhydrides," *J. Mater. Chem. A*, **6**, 23457-23463 (2018).

 A. Watanabe, G. Kobayashi*, N, Matsui, M. Yonemura, A. Kubota, K. Suzuki, M. Hirayama, R. Kanno, "Ambient pressure synthesis and H⁻ conductivity of LaSrLiH₂O₂," *Electrochem.*, **85**, 88-92 (2017).

6) G. Kobayashi*, Y. Hinuma, S. Matsuoka, A. Watanabe,
I. Muhammad, M. Hirayama, M. Yonemura, T. Kamiyama,
I. Tanaka and R. Kanno*, "Pure H⁻ Conduction in Oxyhydrides," *Science*, **351**, 1314-1317 (2016).

7) G. Kobayashi*, Y. Irii, F. Matsumoto, A. Ito, Y. Ohsawa, S. Yamamoto, Y. Cui, J.-Y. Son and Y. Sato, "Improving Cycling Performance of Li[Li_{0.2}Ni_{0.18}Co_{0.03}Mn_{0.58}]O₂ through Combination of Al₂O₃-based Surface Modification and Stepwise Pre-cycling,",*J. Power Sources*, **303**, 250-256 (2016).

飯野 亮太(教授) IINO, Ryota

1995年京都大学工学部卒、 1997年京都大学大学院工学 研究科修了、2000年名古屋大 学大学院理学研究科単位取 得退学、2003年博士(理学)。 2000年~2005年科学技術振 興機構研究員、2005年~2011 年大阪大学産業科学研究所 特任助手、助手、助教、2011年~ 2014年東京大学大学院工学研 穷杯講師、准教授を経て2014年 6月より現職。

mail: iino@ims.ac.jp

1995 B.E. Kyoto University

1997 M.E. Kyoto University

2003 Ph.D. Nagoya University

2000 Research Associate, Japan Science and Technology Cooperation

- 2002 Research Associate, Japan Science and Technology Agency
- 2005 Specially-appointed Assistant Professor, Osaka University
- 2006 Assistant Professor, Osaka University
- 2011 Lecturer, The University of Tokyo
- 2013 Associate Professor, The University of Tokyo
- 2014 Professor, Okazaki Institute for Integrative Bioscience

Professor, Institute for Molecular Science

Professor, The Graduate University for Advanced Studies

Keywords>

Molecular Machines, Molecular Motors, Protein Engineering,

Single-Molecule Analysis

生体分子機械の作動原理、設計原理の徹底的理解 Operation and Design Principles of Biological Molecular Machines

生命活動は進化の過程で創られた分子機械が支えて います¹⁾。タンパク質でできた生体分子機械は、2016年 ノーベル化学賞で話題となった人工分子機械よりも遥 かに優れた機能を発揮しますが、人工分子機械のように 人間が自在に設計することはまだできていません。私た ちは、個々の生体分子機械の動きや形を観る、天然にな い生体分子機械を創る方法を開発する、といったアプ ローチで、その作動原理と設計原理を明らかにします。

1.生体分子機械に学ぶ:私たちは生体分子機械の作 動原理を解明します。生体分子機械の代表例は、入力エネ ルギーを一方向性の運動に変換する分子モーターです。 私たちはリニア分子モーター²⁻⁸⁾や回転分子モーター ⁹⁻¹¹⁾を研究しています。例えば、バイオ燃料の原料となる 結晶性多糖を分解するキチナーゼ³⁻⁵⁾、V-ATPase⁹⁻¹²⁾は 一方向に運動するリニア分子モーターです。駆動力は ATPではなくレールである多糖の分解のエネルギーで、 ミオシン、キネシン等の従来のリニア分子モーターとは 作動原理が全く異なります。また回転分子モーター V-ATPaseは⁹⁻¹²⁾、力学的回転を介してATPの化学エネ ルギーとイオンの電気化学ポテンシャルを相互変換する ことができます。これらは人工分子機械には達成でき ていない高度な機能です。

2.生体分子機械を創る:私たちは天然に存在しない 新しい生体分子機械を創ることにチャレンジしてい ます^{13),14)}。生体分子機械には基本構造がよく似たもの が存在します。AAA+ファミリーはその代表例で¹⁰⁾、 V-ATPaseもこのファミリーに属します。特筆すべきは、 似た構造なのに機能は多彩な点です。計算科学による 合理設計や網羅的変異体作製を駆使し、V-ATPase、 セルラーゼ、キチナーゼなどを積極的に改造して多彩 な機能を発揮する設計原理を理解します。

3.生体分子機械の機能を調べる、形を調べる:私たち は1分子計測法を生体分子機械の機能解析に駆使し ます^{16),17)}。プラズモニックナノプローブを用いた高速・高 位置決定精度1分子計測の開発等を行っています。また、 生体分子機械の形を調べるX線結晶構造解析も行って います。

参考文献

1) lino R, et al., Chem. Rev. 120: 1-4 (2020).

Nakamura A, et al., *J. Biol. Chem.* 295: 14606-14617 (2020).
 Nakamura A, et al., *Nat. Commun.* 9: 3814 (2018).
 Visootsat A, et al., *J. Biol. Chem.* 295: 1915-1925 (2020).
 Nakamura A, et al., *J. CCP* 20: 3010-3018 (2018).
 Nakamura A, et al., *J. Biol. Chem.* 291: 22404-22413 (2016).
 Nakamura H, Ino R, et al., *Nat. Chem. Biol.* 12: 290-297 (2016).
 Ando J, et al., *Sci. Rep.* 10: 1080 (2020).

9) Tsunoda J, et al., *Sci. Rep.* **8**: 15632 (2018).

Activity of life is supported by molecular machines made of proteins¹⁾. Protein molecular machines are far superior to synthetic molecular machines in many aspects. We elucidate operation and design principles of protein molecular machines.

<u>1. Understand biomolecular machines</u>: Molecular motors are representative of the protein molecular machines. Molecular motors generate mechanical forces and torques driving unidirectional motions from the energy of chemical reaction or the potential energy. We are studying linear²⁻⁸⁾ and rotary motors⁹⁻¹¹⁾. Especially, we focus on new molecular motors such as chitinase³⁻⁵⁾, cellulase^{2),6)} and V-ATPase.

2. Engineer biomolecular machines: Many biomolecular machines have similar structures, implying same evolutional origin. AAA+ family is one of the representatives¹⁰). Rotary molecular motor V-ATPase also belongs to this family. Interestingly, the AAA+ molecular machines show wide variety of functions. We engineer non-natural biomolecular machines with new functions^{13), 14}).

3. Investigate functions and structures of biomolecular machines: Our study is based on state-of-the-art single-molecule techniques^{16), 17)}. We are developing single-molecule methods such as high-speed and high-localization precision measurements with plasmonic nanoprobes. We also determine crystal structures of biomolecular machines by X-ray crystallography.

Protein molecular machines

10) lino R, et al., *Curr. Opin. Struct. Biol.* **31**: 49-56 (2015).
11) Ueno H, Minagawa Y, et al., *J. Biol. Chem.* **289**: 31212-31223 (2014).

12) lida T, et al., *J. Biol. Chem.* 2019 **294**: 17017-17030 (2019).
13) Visootsat A, et al., *ACS Omega* **5**: 26807–26816 (2020).
14) Baba M, et al., *PNAS* **113**: 11214-11219 (2016).

- 15) Ando J, et al., ACS Photonics 6: 2870-2883 (2019).
- 16) Ando J, et al., Biophys. J. 115: 2413-2427 (2018).
- 17) Uchihashi T, et al., Nat. Commun. 9: 2147 (2018).

魚住 泰広(教授) UOZUMI, Yasuhiro

1984年北海道大学薬学部卒、 1990年薬学博士。日本学術 振興会特別研究員、北海道 大学教務職員、同助手、米国 コロンビア大学研究員、京都 大学講師、名古屋市立大学 教授を経て2000年より現職。 TEL: 0564-59-5571 FAX: 0564-59-5574 mail: uo@ims.ac.jp

1984	B.S. Hokkaido University
1990	Ph.D. Hokkaido University
1988	JSPS fellow
1988	
	Hokkaido University
1990	Assistant Professor,
	Hokkaido University
1994	
	Columbia University
1995	Lecturer, Kyoto University
1997	Professor, Nagoya City
	University
2000	
	Molecular Science
	Professor, The Graduate
	University for Advanced
	Studies
2002-	Professor (adhoc),
2005	
	Research team leader.
2017	
	Professor (adhoc), Tokyo
2012	
	ACCEL Project Leader,
2019	RIKEN
2014-	Distinguished Professor,
	Three George University
2003-	Research Project Leader,
2008	JST CREST Project on
	Green Catalysis
	Research Project Leader,
2012	NEDO Project on Green
	Chemical Processes
	Deputy Research
2016	
	JST CREST Project on

2014- Research Project on Leader, JST ACCEL Project on Hyper-Active

Catalysis

Keywords

Transition Metal Catalysis, Green Chemistry, Organic Synthesis ■錯体触媒研究部門 Complex Catalysis

有機分子変換を駆動・制御する 新しい反応システムの構築 Development of Heterogeneous Catalysis toward Ideal Chemical Processes

人類が化学を体系づける遥か太古の昔から生命は精 緻な化学分子変換を実現しています。それら生命化学反 応は中性、常圧、常温、水中で高い選択性を伴って進行し ます。我々は理想的な化学反応システムの創出を目指し、 生命化学工程を司る酵素の構造的模倣ではなく、化学 反応の駆動原理、駆動システムを生命から学びとること を出発点としました。すなわち酵素はしばしば遷移金属 活性中心を持ち、タンパクからなる疎水性ポケットの中 で化学反応を駆動します。そこで我々は両親媒性高分子 や両親媒性分子集合体が水中でこそ創りだす疎水性反 応場を利用し、そこに遷移金属触媒(錯体触媒やナノ粒 子触媒)を埋め込むことで完全水系媒体中での精密な 有機分子変換工程を達成しています。中でも高分子マト リクス内への固定化と水中での触媒反応実施を前提に 設計された独自の光学活性配位子ーパラジウム錯体を 導入した両親媒性高分子触媒は、アリル位置換反応や Suzuki反応において高い選択性を水中不均一条件下 で実現しています。また高分子固定化白金ナノ触媒では アルコール類の酸化反応が触媒的に水中で酸素ガスの みで実現されます。

有機分子は元来「油」であり水には馴染みません。 水中で高分子触媒を用いて有機化学反応を実施すると、 疎水性有機分子は自ずから高分子マトリクス内に入り 込んで行き高濃度状態で触媒の近傍に集まり、高効率 で触媒反応が駆動されます。すなわち外部からのエネル ギーなどに依らず、分子が持つ性質そのものを駆動力と する反応システムです。

参考文献

1) Takao Osako, Kaoru Torii, Shuichi Hirata, Yasuhiro Uozumi "Chemoselective Continuous-Flow Hydrogenation of Aldehydes Catalyzed by Platinum Nanoparticles Dispersed in an Amphiphilic Resin" ACS Catal. 7, 7371-7377 (2017). 2) Go Hamasaka, Tsubasa Muto, Yoshimichi Andoh, Kazushi Fujimoto, Kenichi Kato, Masaki Takata, Susumu Okazaki, Yasuhiro Uozumi "Detailed Structural Analysis of a Self-Assembled Vesicular Amphiphilic NCN-Pincer Palladium Complex by Wide-Angle X-Ray Scattering and Molecular Dynamics Calculations" Chem. Eur. J. 23, 1291-1298 (2017). 3) Heevoel Baek, Maki Minakawa, Yoichi M. A. Yamada, Jin Wook Han, Yasuhiro Uozumi "In-Water and Neat Batch and Continuous-Flow Direct Esteri cation and Transesteri cation by a Porous Polymeric Acid Catalyst" Sci. Rep. 6, 25925 (2016). 4) Yoichi M. A. Yamada, Yoshinari Yuyama, Takuma Sato, Shigenori Fujikawa, Yasuhiro Uozumi "A Palladium-Nanoparticle and Silicon-Nanowire-Array Hybrid: A Platform for Catalytic Heterogeneous Reactions" Angew. Chem. Int. Ed. 53, 127-131 (2014). 5) Yoichi M. A. Yamada, Shaheen M. Sarkar, Yasuhiro Uozumi "Amphiphilic Self-Assembled Polymeric Copper Catalyst to

Our research interests lie in the development of transition metal-catalyzed reaction systems toward ideal (highly efficient, selective, green, safe, simple, etc.) organic transformation processes. In one active area of investigation, we are developing the heterogeneous aquacatalytic systems. Various types of catalytic organic molecular transformations, e.g. carbon-carbon bond forming cross-coupling, carbon-heteroatom bond forming reaction, aerobic alcohol oxidation, etc., were achieved in water under heterogeneous conditions by using amphiphilic polymer-supported transition metal complexes and nanoparticles, where self-concentrating behavior of hydrophobic organic substrates inside the amphiphilic polymer matrix played a key role to realize high reaction performance in water.

Parts per Million Levels: Click Chemistry," J. Am. Chem. Soc. **134**, 9285–9290 (2012).

6) Yoichi M. A. Yamada, Shaheen M. Sarkar, Yasuhiro Uozumi, "Self-Assembled Poly(imidazole-palladium): Highly Active, Reusable Catalyst at Parts per Million to Parts per Billion Levels," *J. Am. Chem. Soc.* **134**, 3190-3198 (2012).

 Shaheen M. Sarkar, Yoichi M. A. Yamada, Yasuhiro Uozumi, "A highly Active and Reusable Self-Assembled Poly (Imidazole/Palladium) Catalyst: Allylic Arylation/Alkenylation," *Angew. Chem. Int. Ed.* 50, 9437-9441 (2011).

8) Go Hamasaka, Tsubasa Muto, Yasuhiro Uozumi, "Moleular-Architecture-Based Administration of Catalysis in Water: Self-Assembly of an Amphiphilic Palladium Pincer Complex," *Angew. Chem. Int. Ed.* **50**, 4876-4878 (2011).

 Yasuhiro Uozumi, Yutaka Matsuura, Takayasu Arakawa, Yoichi M. A. Yamada Asymmetric Suzuki-Miyaura Coupling in Water with a Chiral Palladium Catalyst Supported on an Amphiphilic Resin *Angew. Chem. Int. Ed.* 48, 2708-2710 (2009).
 Yoichi M. A. Yamada, Takayasu Arakawa, Heiko Hocke, Yasuhiro Uozumi, "A Nanoplatinum Catalyst for Aerobic Oxidation of Alcohols in Water," *Angew. Chem. Int. Ed.* 46, 704-706 (2007).

11) Yasuhiro Uozumi, Yoichi M. A. Yamada, Tomohiko Beppu, Naoshi Fukuyama, Masaharu Ueno and Takehiko Kitamori, "Instantaneous Carbon-Carbon Bond Formation Using a Microchannel Reactor with a Catalytic Membrane," *J. Am. Chem. Soc.* **128**, 15994-15995 (2006).

椴山 儀恵(准教授) MOMIYAMA, Norie

2000年名古屋大学工学部卒、 2005年シカゴ大学大学院化学 科博士課程修了Ph.D.。米国 ハーバード大学博士研究員 (Damon Runyon Cancer Research Foundation Post Doctoral Research Fellow)、 東北大学大学院理学研究科 助手、助教を経て2014年6月 より現職。

TEL: 0564-59-5531

mail: momiyama@ims.ac.jp

2000 B.S. Nagoya University

2005 Ph.D.The University of Chicago

2005 Postdoctoral Fellow, Harvard University

2006 Assistant Professor, Tohoku University

2014 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

⟨Keywords⟩ Organic Synthesis, Molecular Catalyst, Non-Covalent Interaction

■錯体触媒研究部門 Complex Catalysis

キラル分子・キラル機能性物質の デザイン・合成・機能創出 Design, Synthesis, and Functionalization of Chiral Molecules

物質がその鏡像と重ね合わすことができない性質を 「キラリティ」といい、そのような性質をもつ分子を"キラ ル分子"と呼びます。「キラリティ」は、様々な物質の性質 を進展させる要素として知られています。物質にキラリ ティを組み込むことは、その機能の飛躍的な向上に繋 がり、夢の物質を創り出す第一歩となります。私たちの グループでは、キラル機能性物質開発への応用展開を 最終目標に、現在、その基盤づくりに取り組んでいます。 独自のキラル分子をデザインし、その合成に向けて独自 の合成手法を開発し、独自に合成したキラル分子の新た な機能の創出をめざして、日々研究を進めています。

私たちはこれまでに、複数の水素結合供与部位を有 するキラル分子触媒の開発に成功しました。このキラル 分子は、複数あるコンフォメーションのうち、ひとつの 特有のコンフォメーションのみをとります。さらに、この キラル分子が、キラルな小分子を供給する分子性触媒 として機能することを見出しました。この結果は、数千か ら数万の分子量を有する酵素の機能が、分子量が数百 程度の人工キラル分子により簡易的に実現できること を示唆しています。

私たちは、キラル分子をデザインし、開発した反応を 駆使して、新たな可能性を秘めたキラル分子の創成に挑 戦しています。様々な解析手法を用いて、合成した分子 の未知の振る舞いを解明し、分子に特有の性質を見出 すことで、新たな機能を有するキラル物質を創り出して いきたいと考えています。

参考文献

 C. Jongwohan, Y. Honda, T. Suzuki, T. Fujinami, K. Adachi, N. Momiyama, "Brønsted Acid-Initiated Formal [1,3]-Rearrangement Dictated by β-Substituted Ene-Aldimines" *Org. Lett.* **21**, 4991-4995 (2019).

2) N. Momiyama, H. Tabuse, H. Noda, M. Yamanaka, T. Fujinami, K. Yamanishi, A. Izumiseki, K. Funayama, F. Egawa, S. Okada, H. Adachi, M. Terada, "Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid" *J. Am. Chem. Soc.* **138**, 11353-11359 (2016).

3) N. Momiyama, H. Okamoto, J. Kikuchi, T. Korenaga, M. Terada, "Perfluorinated Aryls in the Design of Chiral Brønsted Acid Catalysts: Catalysis of Enantioselective [4+2] Cycloadditions and Ene- Reactions of Imines with Alkenes by Chiral Mono-Phosphoric Acids with Perfluoroaryls" *ACS Catal.* **6**, 1198-1204 (2016).

N. Momiyama, K. Funayama, H. Noda, M. Yamanaka,
 N. Akasaka, S. Ishida, T. Iwamoto, M. Terada, "Hydrogen

"Chirality" is a special property that a substance cannot be superimposed with its mirror image, and a molecule with such a property is called "chiral molecule." "Chirality" is known as a factor that advances the properties of various substances. Incorporating chirality into substances leads to a dramatic improvement in their function and is the first step to create dream substances. We are working on creating the fundamental research with the ultimate goal of application to the development of chiral functional materials. We are designing our own chiral molecule, developing our own synthetic method toward its synthesis, and aiming at creating new functions of uniquely synthesized chiral molecules.

We have successfully developed a chiral molecular catalyst with multiple hydrogen bond donor sites. This chiral molecule takes only one specific conformation out of multiple conformations. In addition, we found that this chiral molecule functions as a molecular catalyst to supply chiral small molecules. This result suggests that the function of enzymes with molecular weights of several thousands to tens of thousands can be easily realized by artificial chiral molecules with molecular weights of several hundreds.

We believe that our challenges create chiral molecules, which have new possibilities by designing chiral molecules and making use of the developed reactions. We are planning to elucidate the unknown behavior of synthesized molecules by using various analytical methods and to create chiral substances with new functions by finding properties peculiar to molecules.

X-ray structure of our recent development

Bonds-Enabled Design of a C₁-Symmetric Chiral Brønsted Acid Catalyst" ACS Catal. **6**, 949-956 (2016). 5) N. Momiyama, T. Narumi, M. Terada, "Design of a Brønsted Acid with Two Different Acidic Sites: Synthesis and Application of Aryl Phosphinic Acid-Phosphoric Acid as a Brønsted Acid Catalyst" Chem. Commun. **51**, 16976-16979 (2015).

6) N. Momiyama, T. Konno, Y. Furiya, T. Iwamoto, M. Terada, "Design of Chiral Bis-phosphoric Acid Catalyst Derived from (*R*)-3,3'-Di(2-hydroxy-3-arylphenyl) binaphthol: Catalytic Enantioselective Diels-Alder Reaction of α,β-Unsaturated Aldehydes with Amidodienes" *J. Am. Chem. Soc.* **133**, 19294-19297 (2011).

草本 哲郎(准教授) KUSAMOTO, Tetsuro

2003年東京大学理学部卒、 2010年東京大学大学院理学 系研究科博士後期課程修了、 理学博士。ソニー株式会社、 日本学術振興会特別研究員 (DC1)、理化学研究所特別 研究員および基礎科学特別 研究員、東京大学大学院理 学系研究科特任助教、東京 大学大学院理学系研究科 助教を経て現職。

mail: kusamoto@ims.ac.jp

2003 B.S. The University of Tokyo

2010 Ph.D. The University of Tokyo

2005 Sony Corporation

2010 Postdoctoral Fellow, RIKEN

2012 Project Assistant Professor,The University of Tokyo

2013 Assistant Professor, The University of Tokyo

2019 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

> > Keywords>
> > Radical

Open-Shell Electronic States

Photonic-Electronic-Magnetic Properties

開設電子系分子を基に 新しい光・電子・磁気物性を開拓する Creation of Novel Photonic-Electronic-Magnetic Functions Based on Molecules with Open-Shell Electronic Structures

水(H₂O)や窒素(N₂)、ベンゼン(C₆H₆)に代表される ように、一般的な分子は偶数個の電子を持ち、閉殻電子 構造を有しています。一方でラジカルと呼ばれる奇数個 の電子を有する分子は開殻電子構造を有し、超伝導体 になったり磁石になったりと、閉殻電子構造では実現が 困難な化学的・物理的性質を発現します。私たちの研究 グループでは、ラジカルや有機-無機複合物質である 金属錯体など開殻電子構造を有する新しい分子性物質 を合成し、これまでにないユニークな機能を創出する ことを目指し、研究を進めています。

私たちはラジカルが示す発光特性に着目しています。 発光性の分子が有機EL等の高性能発光デバイスの鍵 物質として盛んに研究されている一方で、ラジカルは発光 しない物質として考えられ、その発光特性は未開拓研究 分野となっていました。この未開拓領域を切り拓くべく、 私たちは分子の構造を適切にデザインし、高い化学安定 性を有する発光性ラジカルPyBTMを開発しました。 PyBTMを基として新しい発光性ラジカルや発光性開殻 金属錯体を様々に合成し、「開殻電子系ならではの電子 の振舞いが、どのような新しい光特性を生み出すのか?」 を調べています。最近では、ラジカルの発光色が磁場に よって大きく変化することを世界で初めて発見しました。 これらの研究成果は、基礎科学の発展のみならず、例えば 発光デバイスを省エネ化するための新方法の提案など、 応用科学の発展にも貢献しています。

その他、開殻電子系錯体を一次元的・二次元的に規則的 配列させた結晶を作製し、結晶中を動き回る電子、ある いは動き回りたいのに動けなくてうずうずしている電子 が示す電気・磁気特性を調べています。結晶という小さな 粒の中からこれまで誰も考えもしなかったような壮大な 物理が生まれることを夢見て、日々研究を進めています。

参考文献

1) S. Kimura, S. Kimura, K. Kato, Y. Teki, H. Nishihara, and T. Kusamoto "A ground-state-dominated magnetic field effect on the luminescence of stable organic radicals" *Chem. Sci.* **12**, 2025-2029. (2021).

 S. Kimura, T. Kusamoto, S. Kimura, K. Kato, Y. Teki, and H. Nishihara "Magnetoluminescence in a Photostable, Brightly Luminescent Organic Radical in a Rigid Environment" *Angew. Chem. Int. Ed.* 57, 12711–12715 (2018).
 Y. Hattori, T. Kusamoto, and H. Nishihara "Luminescence, Stability, and Proton Response of an Open-Shell (3,5-Dichloro-4-pyridyl) bis(2,4,6trichlorophenyl) methyl Radical" *Angew. Chem. Int. Ed.* 53, 11845–11848 (2014).

4) T. Kusamoto, H. M. Yamamoto, N. Tajima, Y. Oshima,

The molecules with open-shell electronic states can exhibit unique properties, which are difficult to achieve for conventional closed-shell molecules. Our group develops new open-shell organic molecules (= radicals) and metal complexes to create novel photonic-electronic-magnetic functions.

While conventional closed-shell luminescent molecules have been extensively studied as promising components for organic light-emitting devices, the luminescent properties of radicals have been much less studied because of its rarity and low chemical (photo-)stability. We have developed a novel luminescent organic radical PyBTM, which is highly stable at ambient condition and in the photoexcited state. We have also discovered that (i) PyBTM-doped molecular crystals exhibit photoluminescence with a room-temperature emission quantum yield of 89%, which is exceptionally high in radicals, and (ii) the doped crystals show drastic changes in the emission spectra by applying a magnetic field. This is the first observation of the magnetoluminescence in organic radicals. Our studies provide novel and unique insights in molecular photonics, electronics, and spintronics, and also contribute to developing applied science for light-emitting devices.

Our group focuses on frustrated spins in molecular crystals. The anisotropic assembly of open-shell molecules in crystalline states can afford unusual electronic states attributed to the frustrated spins, providing exotic electrical and magnetic properties.

(a) Molecular structure of PyBTM and its characteristics.
(b) Schematic photoexcitation-emission processes.
(c) Emission in CH₂Cl₂. (d) Emission of PyBTM-doped molecular crystals. (e) Controlling emission by magnetic field.

S. Yamashita, and R. Kato "Bilayer Mott System with Cation Supramolecular Interactions Based on Nickel Dithiolene Anion Radical: Coexistence of Ferro- and Antiferro-magnetic Anion Layers and Large Negative Magnetoresistance" *Inorg. Chem.* **52**, 4759–4761 (2013).

瀬川泰知(准教授) SEGAWA Yasutomo

2005年東京大学工学部化 学生命工学科卒、2007年東 京大学大学院工学系研究科 化学生命工学専攻修士課程 修了、2009年東京大学大学 院工学系研究科化学生命工 学専攻博士課程修了、博士 (工学)。2008年~2009年 日本学術振興会特別研究員 (DC1)、2009年~2013年 名古屋大学物質科学国際研 究センター助教、2013年~ 2020年名古屋大学大学院 理学研究科特任准教授および JST ERATO伊丹分子ナノ カーボンプロジェクトグルー プリーダー・研究総括補佐を 経て、2020年4月より現職。 TEL: 0564-59-5587

mail: segawa_at_ims.ac.jp 2005 B.S.The University of Tokyo

2009 Ph.D. The University of Tokyo

2009 Associate Professor, Nagoya University

2013 Designated Associate Professor, Nagoya University

> Group Leader and Project Coordinator, JST ERATO Itami Molecular Nanocarbon Project

2020 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

Keywords>

π-Conjugated Molecules, Molecular Topology, 3D Network Polymer

3次元空間をデザインする有機合成化学 Design and Synthesis of Three-dimensional Organic Structures

芳香族化合物は、その構造によって多彩な電子的性 質をもちます。有機合成化学の発展にともなって、デザ インして精密に合成できる分子の種類が増えている一 方で、芳香族化合物はそれだけでは機能を十分に発揮 することはできず、3次元的に集合することで半導体な どの材料として利用できます。しかし集積様式は分子の 形のわずかな違いに左右されるために予測が難しく、特 に結晶状態を精密にデザインすることは未だ困難です。

当研究グループでは、トポロジーや空間対称性といっ た幾何学的手法を積極的に取り入れることによって、従 来の有機合成化学では実現困難だった「3次元空間を敷 き詰める有機合成化学」に挑戦します。具体的には以下 の研究を行います。

・3次元幾何構造をもつ有機共有結合結晶の合成と 機能解明

・分子の概念を拡張する新たな分子トポロジーの確立

・電子回折結晶構造解析の有機機能性材料開発への
 活用

「パズルのように分子を作る」の理念のもとに、従来の 有機合成化学の限界を超えた物質創製に取り組んで いきます。

参考文献

1) Kenta Kato, Kiyofumi Takaba, Saori Maki-Yonekura, Nobuhiko Mitoma, Yusuke Nakanishi, Taishi Nishihara, Taito Hatakeyama, Takuma Kawada, Yuh Hijikata, Jenny Pirillo, Lawrence T. Scott, Koji Yonekura, Yasutomo Segawa, Kenichiro Itami, "Double-Helix Supramolecular Nanofibers Assembled from Negatively Curved Nanographenes" *J. Am. Chem. Soc.*, **143**, 5465–5469 (2021).

2) Kwan Yin Cheung, Kosuke Watanabe, Yasutomo Segawa, and Kenichiro Itami, "Synthesis of a Zigzag Carbon Nanobelt" *Nature Chem.*, **13**, 255–259 (2021).

3) Kosuke Watanabe, Yasutomo Segawa, and Kenichiro Itami, "A theoretical study on the strain energy of helicene-containing carbon nanobelts" *Chem. Commun.*, **56**, 15044-15047 (2020).

4) Yutaro Saito, Kotono Yamanoue, Yasutomo Segawa, and Kenichiro Itami, "Selective Transformation of Strychnine and 1,2-Disubstituted Benzenes by C–H Borylation" *Chem*, **6**, 985-993 (2020).

5) Yasutomo Segawa, Motonobu Kuwayama, Yuh Hijikata, Masako Fushimi, Taishi Nishihara, Jenny Pirillo, Junya Shirasaki, Natsumi Kubota, and Kenichiro Itami, "Topological Molecular Nanocarbons: All-benzene Catenane and Trefoil Aromatic compounds are potentially useful as functional electronic materials. However, the design and control of three-dimensional molecular assembly are still very difficult, especially for the crystal engineering of organic molecules. This group aims to create novel topological and reticular organic structures by using synthetic organic chemistry and geometric insight. To achieve our purpose, this group will start electron-diffraction crystallography (MicroED) for the rapid structure determination of three-dimensional covalent organic frameworks.

 Design and synthesis of π-conjugated organic molecules

2) Development of novel molecular topology

3) Construction of 3D network polymers

Knot" Science, 365, 272-276 (2019).

6) Yasutomo Segawa, David R. Levine, and Kenichiro Itami, "Topologically Unique Molecular Nanocarbons" *Acc. Chem. Res.*, **10**, 2760-2767 (2019).

7) Guillaume Povie, Yasutomo Segawa, Taishi Nishihara, Yuhei Miyauchi, and Kenichiro Itami "Synthesis and Size-Dependent Properties of [12], [16], and [24]Carbon Nanobelts" *J. Am. Chem. Soc.*, **140**, 10054–10059 (2018).

 8) Tetsushi Yoshidomi, Tomohiro Fukushima, Kenichiro Itami, and Yasutomo Segawa, "Synthesis, Structure, and Electrochemical Property of a Bimetallic Bis-2-pyridylidene Palladium Acetate Complex" *Chem. Lett.*, 46, 587–590 (2017).
 9) Guillaume Povie, Yasutomo Segawa, Taishi Nishihara, Yuhei Miyauchi, and Kenichiro Itami, "Synthesis of a Carbon Nanobelt" *Science*, 356, 172–175 (2017).

10) Yasutomo Segawa and Douglas W. Stephan, "Metal-free Hydrogenation Catalysis of Polycyclic Aromatic Hydrocarbons" *Chem. Commun.*, **48**, 11963–11965 (2012).
11) Yasutomo Segawa, Makoto Yamashita, and Kyoko Nozaki, "Boryllithium: Isolation, Characterization, and Reactivity as a Boryl Anion" *Science*, **314**, 113–115 (2006).

青野 重利(教授) AONO, Shigetoshi

1982年東京工業大学工学部 卒、1987年同大学大学院理工 学研究科博士課程修了、工学 博士。日本学術振興会特別 研究員、ジョージア大学博士 研究員、東京工業大学助手、 北陸先端科学技術大学院 大学助教授を経て2002年5月 より現職。

TEL: 0564-59-5575

FAX: 0564-59-5576

mail: aono@ims.ac.jp

1982	B.S. Tokyo Institute of
	Technology
1987	Ph.D. Tokyo Institute of
	Technology
1988	Postdoctoral Fellow,
	University of Georgia
1989	Assistant Professor,
	Tokyo Institute of
	Technology
1994	Assistant Professor,
	Japan Advanced
	Institute of Science and
	Technology
2002	Professor, Institute for
	Molecular Science

Professor, Okazaki Institute for Integrative Bioscience (-2018)

Professor, The Graduate University for Advanced Studies

2018 Professor, Exploratory Research Center on Life and Living Systems

Keywords>
Bioinorganic Chemistry,
Metalloproteins,
Sensor Protein

新規な機能を有する金属タンパク質の構造と機能 Bioinorganic Chemistry of Metalloproteins Responsible for Signal Transduction

遷移金属イオンや遷移金属含有補欠分子族を活性中 心とする金属タンパク質は、生物の物質代謝やエネル ギー代謝において中心的な役割を果たしているのみな らず、細胞内情報伝達にも深く関わっていることが知ら れています。生物は様々な外部環境変化に対応し、生体 内の恒常性を維持するための精緻なシステムを有して います。このようなシステムは、外部環境の変化を感知 するためのセンシングシステムと、感知した情報に対応 して細胞内の恒常性維持に必要な応答反応に関与する レスポンスレギュレーターシステムから構成されていま す。このようなシステムの中には、遷移金属イオンが関 与しているシステムも多く存在しています。代表的な例 として、酸素、一酸化炭素、一酸化窒素等の気体分子の ような、単純タンパク質では応答不可能なシグナルに対 する応答システムがあります。これらのシステムでは、分 子中に遷移金属イオンを含む金属タンパク質がセン サー分子として機能することにより、遺伝子発現、走化 性制御、セカンドメッセンジャー分子の合成・分解を介し た代謝制御などの様々な生理機能制御に関与していま す。また、遷移金属イオンそのものがシグナル分子とし て機能することにより、生理機能制御に必須な遷移金属 イオンの細胞内濃度を適正に維持するために必要な分 子マシナリー(金属イオン取込み・排出システム、細胞内 金属輸送システム等)の発現制御、金属タンパク質の生 合成制御など、様々な生理機能が制御されています。

我々は、構造生物学、遺伝子工学、分子生物学、および 各種分光学的な実験手法を駆使することにより、シグナル センシングやシグナル伝達に関与する新規な金属タン パク質の構造機能相関解明、および細胞内遷移金属 イオンの恒常性維持の分子機構解明を目的として研究 を進めています。

参考文献

 "Structural basis for heme transfer reaction in heme uptake machinery from Corynebacteria" N. Muraki, C. K.,
 Y. Okamoto, T. Uchida, K. Ishimori, and S. Aono, *Chem. Commun.* 55, 13864-13867 (2019).

2) "Structural characterization of HypX responsible for CO biosynthesis in the maturation of NiFe-hydrogenase" N. Muraki, K. Ishii, S. Uchiyama, S. G. Itoh, H. Okumura, and S. Aono, *Commun. Biol.* **2**, 385 (2019).

 "Protein Dynamics of the Sensor Protein HemAT as Probed by Time-Resolved Step-Scan FTIR Spectroscopy,"
 A. Pavlou, H. Yoshimura, S. Aono, E. Pinakoulaki, *Biophys. J.* 114, 584-591 (2018).

4) "Probing the role of the heme distal and proximal environment in ligand dynamics in the signal transducer

Transition metal ions and metalloproteins play crucial roles in signal transduction processes in addition to their traditional roles in energy and substance metabolisms. Many responses to metals occur transcriptionally or post-transcriptionally. The metal-responsive transcription factors control the expression of genes encoding proteins responsible for metal homeostasis in cells including metal ions uptake/efflux, intracellular metal trafficking, and biogenesis of metalloproteins. Metal-responsive signal transduction pathways emanating from metal sensing at the cell membrane are also responsible for biological regulation in response to metals. Metal-based sensor proteins are utilized to sense external signals that cannot be sensed by simple sensor proteins without any prosthetic group, in which transition metal ions or metal-containing prosthetic groups act as the active center of signal sensing.

My research interests are foucused on the elucidation of the structural and functional relationships for metal-dependent proteins working in biological signal-transduction systems including metal-based sensor proteins, transition metal ion-sensing transcriptional regulators, and protein machineries responsible for metal ions homeostasis in both prokaryotes and eukaryotes.

X-ray structure of HypX that catalyzes CO biosynthesis for the assembly of the active site in NiFe-hydrogenase. CoA, which is shown in a stick model, is bound in the cavity (gray mesh in (a)) . There are two open window (A and B in (b)) on the protein surface.

protein HemAT by time-resolved step-scan FTIR and resonance Raman spectroscopy," A. Pavlou, A. Loullis, H. Yoshimura, S. Aono, E. Pinakoulaki, *Biochemistry*, **56**, 5309-5317 (2017).

 "Structural characterization of heme environmental mutants of CgHmuT that shuttles heme molecules to heme transporters," N. Muraki, C. Kitatsugi, M. Ogura, T. Uchida, K. Ishimori, S. Aono, *Int. J. Mol. Sci.* **17**, 829 (10pages) (2016).
 "Structural Basis for Heme Recognition by HmuT Responsible for Heme Transport to the Heme Transporter in Corynebacterium glutamicum," N. Muraki, S. Aono, *Chem. Lett.* **45**, 24-26 (2015).

加藤 晃一(教授) KATO, Koichi

1986年東京大学薬学部卒、 1991年同大学院薬学系研究 科博士課程修了、薬学博士。 東京大学助手・講師、名古屋市 立大学大学院薬学研究科教授 を経て2008年4月より現職。 TEL: 0564-59-5225 FAX: 0564-59-5225 mail: kkatonmr@ims.ac.jp

1986	B.S. The University of Tokyo	
1991	Ph.D. The University of Tokyo	
1991	Assistant Professor, The University of Tokyo	
1997	Lecturer, The University	
	of Tokyo	
2000	Professor, Nagoya City University	
2008	Professor, Okazaki	
	Institute for Integrative	
	Bioscience (-2018)	
	Professor, Institute for	
	Molecular Science	
	Professor, The Graduate	
	University for Advanced	
	Studies	
2013-	Project Leader, JSPS	
	Grant in Aid for Scientific	
	Research on Innovative	
	Areas "Dynamical ordering of biomolecular	
	systems for creation of	
	integrated functions"	
	(-2018)	
2018	Director, Exploratory	
2010	Research Center on	
	Life and Living Systems	
	0,	
	<pre>Keywords></pre>	
	Biomolecule,	
Dy	namical Ordering,	
	NMR	

■生体分子機能研究部門 Biomolecular Functions 生命分子システムの動的秩序形成と 高次機能発現の仕組みの探究

Dynamical Ordering of Biomolecular Systems for Creation of Integrated Functions

生命現象の特質は、システムを構成する多数の分子 素子がダイナミックな離合集散を通じて秩序構造を 形成し、外的環境との相互作用を行いつつ、自律的に 時間発展していくことにあります。前世紀末期に勃興 したオミクスアプローチは生命体を構成する分子素 子に関する情報の網羅的集積を実現しました。しかし ながら、それらの生命素子が自律的に柔軟かつロバスト な高次秩序を形成するメカニズムを理解することは、 これからの生命科学の重要な課題です。私たちは、生 物学・化学・物理学の分野横断的な研究を通じて、内 的複雑性を秘めた生命分子素子が動的な秩序を形成 して高次機能を発現する仕組みを分子科学の観点か ら解き明かすことを目指しています。

さらに、生命分子システムのデザインルールを取り 入れた人工自己組織化システムの創生に資すること を目的とした研究も行っています。生命超分子集合体 は、外部環境の変動や超分子集合体間のコミュニケー ションを通じて時空間的発展を遂げています。生命分子 システムの有するこうした特徴の本質を深く理解し、 それを積極的に人工超分子系の設計に取り入れるこ とは、分子科学におけるパラダイムシフトをもたらす ものと考えています。

Living systems are characterized as dynamic processes of assembly and disassembly of various biomolecules that are self-organized, interacting with the external environment. The omics-based approaches developed in recent decades have provided comprehensive information regarding biomolecules as parts of living organisms. However, fundamental questions still remain unsolved as to how these biomolecules are ordered autonomously to form flexible and robust systems. Biomolecules with complicated, flexible structures are selforganized through weak interactions giving rise to supramolecular complexes that adopt their own dynamic, asymmetric architectures. These processes are coupled with expression of integrated functions in the biomolecular systems.

Toward an integrative understanding of the principles behind the biomolecular ordering processes, we conduct multidisciplinary approaches based on detailed analyses of dynamic structures and interactions of biomolecules at atomic level, in conjunction with the methodologies of molecular and cellular biology along with synthetic and computational technique.

Formation of supramolecular machinery through dynamic assembly and disassembly of biomolecules

参考文献

1) Yanaka, S., Yogo, R. and Kato, K., "Biophysical characterization of dynamic structures of immunoglobulin G," *Biophys. Rev.*, **12**, 637–645 (2020).

2) Yagi, H., Yanaka, S. and Kato, K., "Structure and dynamics of immunoglobulin G glycoproteins," *Glycobiophysics* (Y. Yamaguchi and K.Kato ed.), Springer Nature Singapore, pp.219-235 (2018).

3) Satoh,T. and Kato, K., "Structural aspects of ER glycoprotein quality-control system mediated by glucose tagging," *Glycobiophysics (Y.Yamaguchi and K.Kato ed.)*, Springer Nature Singapore, pp.149-169 (2018).

4) Kato, K., Yagi, H. and Yamaguchi, T., "NMR characterization

of the dynamic conformations of oligosaccharides," *Modern Magnetic Resonance, 2nd Edition (G.A.Webb ed.),* Springer International Publishing, pp.737-754 (2018).

5) Kato, K. and Satoh, T., "Structural insights on the dynamics of proteasome formation," *Biophys. Rev.*, **10**, 597-604 (2018).

6) Kato, K., Yanaka, S. and Yagi, H., "Technical basis for nuclear magnetic resonance approach for glycoproteins," *Experimental Approaches of NMR Spectroscopy (The Nuclear Magnetic Resonance Society of Japan ed.)*, Springer Nature Singapore, pp.415-438 (2018).

秋山 修志(教授) AKIYAMA, Shuji

1997年京都大学工学部卒、 1999年京都大学大学院工学 研究科修士課程修了、2002年 京都大学大学院工学研究科 分子工学専攻博士課程修了、 博士(工学)。日本学術振興 会特別研究員、理化学研究所 基礎科学特別研究員、科学 技術振興機構さきがけ「生命 現象と計測分析」研究員(専 任)、名古屋大学大学院理学 研究科講師/准教授を経て 2012年4月より現職。2013年4 月より協奏分子システム研究 センター長。2008年~現在 理化学研究所播磨研究所客 員研究員併任。

TEL/FAX: 0564-55-7363 mail: akiyamas@ims.ac.jp

1997 B. Tech. Kyoto Univ

1999 M. Tech. Kyoto Univ 2002 Ph.D. Kyoto Univ 2001 JSPS Research Fellow 2002 JSPS Postdoctoral Research Fellow 2003 RIKEN Special Postdoctoral Researcher 2005 PRESTO Researcher of JST 2008 Junior Associate Professor, Nagoya University 2011 Associate Professor, Nagoya University 2012 Professor, Institute for Molecular Science

Professor, The Graduate University for Advanced Studies

2013 Director, Research Center of Integrative Molecular Systems

Keywords> Circadian Clock. Cyanobacteria, **Temperature** Compensatior

階層分子システム解析研究部門 Trans-Hierarchical Molecular Systems 生物時計タンパク質が24時間周期の リズムを奏でる仕組みを解き明かす Origins of 24 Hour Period in Cyanobacterial Clock System

「生物(体内)時計」という言葉を意識するのはどのよう なときでしょうか。渡航や帰国後に頻発する眠気、だるさ、 夜間の覚醒…、これら時差ボケの症状は、我々が生物 時計の奏でる24時間周期のリズムのもとで生活している ことの証です。私たちの研究グループでは――生命が 地球の自転周期(24時間)をどのようにしてその内に取り 込んだのか――それを分子科学的に解明するという壮大 な研究テーマに挑戦しています。

シアノバクテリアの生物時計は、3種の時計タンパク質 (KaiA、KaiB、KaiC)とATPを混ぜ合わせることで試験管 内に再構成され(Kaiタンパク質時計)、24時間を正確に 刻むことができます。一方、時を刻む仕組みの分子科学 的理解は進んでいません1)。その一つは「安定した遅さ」 の根源で、既存概念の積み上げでは、タンパク質分子と いう素材で24時間という「遅いダイナミクス」が実現され ている理由を説明できません。もう一つの謎が周期の温 度補償性です。これは生物時計に普遍的に見いだされる 特徴で、時計の発振周期が温度の影響をほとんど受けま せん。遅い反応は大きな活性化エネルギーを有し、温度 の上昇に従って著しく加速されるのが一般的です。生物 時計のからくりに迫るためには、「遅いダイナミクス」と 「温度補償性」という一見排他的な2つの性質を同時に 説明しなければならないのですい。

私たちの研究グループでは、Kaiタンパク質時計の生 化学的な活性測定2)はもとより、X線結晶構造解析2)や X線溶液散乱3-5)を相補的に利用した動的構造解析、蛍 光等による分子動態計測4)や同調実験、計算機を用いた 実験データのシミュレーション2)などを行うことで、 分子時計の実態解明に取り組んでいます。このような 研究活動を通じて、多くの皆さんに生物、化学、物理、制御 工学、計算科学を巻き込んだタンパク質時計研究のフロン ティアを体験して頂ければと思います。)。

参考文献

1) S. Akiyama, "Structural and dynamic aspects of protein clocks: How can they be so slow and stable?" CMLS 69, 2147-2160 (2012).

2) J. Abe et al., "Atomic-scale Origins of Slowness in the Cyanobacterial Circadian Clock" Science 349, 312-316 (2015).

3) S. Akiyama et al., "Assembly and Disassembly Dynamics of the Cyanobacterial Periodosome" Mol. Cell 29, 703-716 (2008)

4) Y. Murayama et al., "Tracking and Visualizing the Circadian Ticking of the Cyanobacterial Clock Protein KaiC in Solution" EMBO J. 30, 68-78 (2011).

6) 秋山 修志, "時間生物学と放射光科学の接点", 放射光 (2016).

5) Mukaiyama et al., Sci. Rep. 8, 8803 (2018).

Circadian (approximately 24 h) clocks are endogenous time-keeping systems encapsulated in living cells, enabling organisms to adapt to daily fluctuation of exogenous environments on the Earth. These time-keeping systems, found ubiquitously from prokaryotes to eukaryotes, share the three characteristics. First, the circadian rhythmicity of the clocks persists even without any external cues (self-sustainability). Second, the period is little dependent on ambient temperature (temperature compensation). Third, the phase of the clock can be reset by external stimuli such as lightning, humidity, or temperature so as to be synchronized to the external phase (synchronization).

KaiC, a core protein of the circadian clock in cyanobacteria, undergoes rhythmic structural changes over approximately 24 h in the presence of KaiA and KaiB (Kai oscillator). This slow dynamics spanning a wide range of both temporal and spatial scales is not well understood, and is central to a fundamental question: What determines the temperature-compensated 24 h period?1) The Kai oscillator reconstitutable in vitro is advantageous for studying its dynamic structure through a complementary usage of both X-ray crystallography²⁾ and solution scattering³⁾⁻⁵⁾, its transient response and synchronization by using physicochemical techniques⁴⁾, and its molecular motion through a collaborative work with computational groups²). Our mission is to explore the frontier in molecular science of the cyanobacterial circadian clock from many perspectives⁶).

Three Major Characteristics

- 1. Self-sustained 24 hour oscillation 自律的に約24
- 2. Constant period (24 h) over wide range of temperature (Temperature Compensation)
- 3. Synchronization (jet lag)

One of the major goals is to provide a model that simultaneously explains above three characteristics. 生物時計の研究における究極的理解とは、上記3つの特性を余すこと なく説明するモデルを掲載することである。

Towards a Unified View of Temperature-compensated 24 h Period in Biological Clock System.

倉持 光(准教授) KURAMOCHI, Hikaru

2007年東京工業大学理学 部卒、2013年東京工業大 学大学院理工学研究科物 質科学専攻博士課程修了、 理学博士。理化学研究所基 礎科学特別研究員、理化学 研究所光量子工学研究領 域研究員、科学技術振興機 構さきがけ研究員を経て 2020年4月より現職。

TEL: 0564-55-7419

mail: hkuramochi@ims.ac.jp

2007 B.S. Tokyo Institute of Technology 2013 Ph.D. Tokyo Institute of

Technology

2013 Special Postdoctoral Researcher, RIKEN

2016 Research Scientist, RIKEN

2017-PRESTO Researcher, Japan Science and Technology Agency

2020 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Study

Keywords

Ultrafast Spectroscopy, Chemical Reaction Dynamics Ultrashort Pulse Generation and Control

階層分子システム解析研究部門 Trans-Hierarchical Molecular Systems

先端的レーザー分光法による 凝縮相分子の機能・構造・ダイナミクスの探究 Elucidation of Function, Structure, and Dynamics of Condensed-Phase Molecular Systems by Advanced Ultrafast Laser Spectroscopy

化学反応は反応座標を横軸とするエネルギーダイア グラムなど、単純化されたモデルを用いてしばしば記述 されます。しかし、実際の反応は多次元ポテンシャルエネ ルギー曲面上を分子が縦横無尽に駆け巡ることで進む ため、その詳細は複雑を極めます。こうした多次元ポテン シャルエネルギー曲面上において分子がどのように振 る舞いどのようにして反応生成物に至るのか、その一部始 終を明らかにすることは化学反応を理解する本質ですが 実験的にはこれは極めて困難です。特に生体分子を始 めとする巨大な自由度を持つ機能性複雑分子に対し これを実現することは新規材料の創成に向けた重要な 知見をも与えることから現代化学における最重要課題の 一つです。

これに対し、私たちは最先端の光技術に基づいた新し い分光計測手法を開発・駆使することで凝縮相分子の 反応ダイナミクスの観測とその解明に取り組んでいます。 特にサブ10フェムト秒(1フェムト秒 = 10⁻¹⁵秒)クラスの 極短パルスレーザー光を用いる独自の超高速分光法・ 非線形分光法により反応に伴った分子の電子状態や 構造の変化を極限的な時間分解能で時々刻々と追跡し、 複雑分子系の反応性や機能発現を決定づけるその精緻 な分子機構を明らかにすることを目的としています。 また、こうした極限分光計測を単一分子レベルで実現 することにより分子1つ1つに固有かつ多様な反応性と その起源を解き明かすことにも挑戦します。このように、 私たちは独自の方法論に基づいて分子の反応をあたか も手に取り目で見たかのように理解することで化学反応 の研究に新たな途を拓くことを目指しています。

Chemical reactions of polyatomic molecular systems proceed on complex potential energy surfaces (PESs) having a vast degree of freedom of nuclear coordinates. For understanding molecular mechanisms underlying the chemical reactions, it is essential to map out the PESs and visualize how the molecules migrate thereon, from the reactant all the way down to the product. To achieve this holy grail in chemistry, we develop advanced ultrafast spectroscopic techniques based on the state-of-the-art optical technology and study chemical reaction dynamics in functional complex molecular systems. In particular, we use ultrafast nonlinear spectroscopy based on sub-10-fs pulses and track the change of the electronic/vibrational structure throughout the chemical reaction with femtosecond temporal accuracy. We also realize such extreme ultrafast spectroscopic experiments at the single-molecule level in the condensed phase for unveiling the diversity and origin of the reactivity governed by the uniqueness of each molecule. We aim to establish a new avenue for the study of chemical reaction dynamics.

Fig. a. Schematic illustration of the chemical reaction dynamics on complicated multidimensional potential energy surfaces (PESs). We aim to visualize how the molecules migrate on these PESs to yield the product and unveil the sophisticated molecular mechanisms underlying the chemical reactions of functional molecular systems.

Fig. b. Setup for advanced ultrafast spectroscopy based on sub-10-fs pulses.

参考文献

1) H. Kuramochi, S. Takeuchi, T. Tahara, *Rev. Sci. Instrum.* **87**, 043107 (2016).

T. Fujisawa, H. Kuramochi, H. Hosoi, S. Takeuchi,
 T. Tahara, *J. Am. Chem. Soc.* **138**, 3942-3945 (2016).
 H. Kuramochi, S. Takeuchi, K. Yonezawa, H. Kamikubo,

M. Kataoka, T. Tahara, *Nat. Chem.* 9, 660-666 (2017).
4) H. Kuramochi, S. Takeuchi, H. Kamikubo, M. Kataoka, T. Tahara, *Sci. Adv.* 5, eaau4490 (2019).
5) H. Kuramochi, S. Takeuchi, M. Iwamura, K. Nozaki, T. Tahara, *J. Am. Chem. Soc.* 141, 19296-19303 (2019).

山本 浩史(教授) YAMAMOTO, Hiroshi

1993年東京大学理学部化学 科卒業、1998年同大学大学院 理学系研究科博士課程修了、 博士(理学)、1998年学習院 大学理学部物理学科助手、 1999年理化学研究所基礎科 学特別研究員、2000年同研 究員、2007年同専任研究員 を経て、2012年4月より現職。 分子科学研究所装置開発室 長を兼任中。

TEL: 0564-55-7334 FAX: 0564-55-7325 mail: yhiroshi@ims.ac.jp

1993 B.S. The University of Tokyo

1998 Ph.D. The University of Tokyo

1998 Research Associate, Gakushuin University

1999 Special postdoctoral fellow, RIKEN

2000 Research Scientist, RIKEN

2007 Senior Research Scientist, RIKEN

2012 Professor, Institute for Molecular Science

> Professor, The Graduate University for Advanced Studies

2012 Visiting Professor, Tokyo Institute of Technology (-2018)

2015 Visiting Professor, Tohoku University (-2020)

Keywords>

Molecular Conductors,

Organic Superconducting Transistors,

Supramolecular Nanowires

Organic Spintronics

分子を使った新しいエレクトロニクスを開拓する Open up Future Electronics by Organic Molecules

新しいエレクトロニクスの担い手として有機分子が 注目を集めています。軽くて曲げられるトランジスタ として最近盛んに研究されている有機トランジスタ (Organic Field Effect Transistor = OFET)や、 ディスプレイ用途に使われている有機発光素子などが その代表例と言えるでしょう。我々の研究室では、有機 分子による新しいエレクトロニクスの創成を目指し て、これまでとは違った独創的なデバイスを提案・実 現していこうと研究に取り組んでいます。現在主に取 り組んでいるのは、有機エレクトロニクスの中でも非 常に特異な性質をもつ「強相関π電子」を使ったトラン ジスタの開発です。強相関電子というのは、電子間の クーロン相互作用が強く働き、通常の伝導電子とは異 なった振る舞いをする電子系のことで、ほんの少し電 子濃度を増やしたり減らしたりするだけで、急に電子 が固まって絶縁体になったり、急に流れ出して金属になっ たりします。不思議なことに、YBa₂Cu₃O_{7- δ}などの銅 酸化物高温超伝導体の伝導電子もまた、この強相関 電子に属することが分かっています。そしてFET構造 の仕組みを利用して有機物界面の「強相関電子」の濃 度を変化させてやると、上に述べたような現象が実際 に起こって、絶縁体を金属や超伝導にスイッチ(相転 移)させることが出来ます。我々は世界で初めて、こう した相転移をOFET界面において観測することに成功 し、デバイスのスイッチング性能を飛躍的に向上させ ることに成功しました。また最近は、超伝導の ON/OFFを光で制御したり、歪みの効果で超伝導転 移を制御したりするデバイスの開発も達成していま す。このようなデバイスは将来量子コンピューターの 中で使われる可能性があるほか、その動作様式を丹 念に調べることによって、まだ分かってないことの多 い強相関電子系超伝導の発現機構解明のための糸口 を与えてくれることが期待されています。このような 研究に加えて、最近はキラル分子を用いたスピン偏極 電流の生成に関する研究にも取り組んでいます。

参考文献

1) M. Suda, Y. Thathong, V. Promarak, H. Kojima, M. Nakamura, T. Shiraogawa, M. Ehara and H. M. Yamamoto "Light-driven Molecular Switch for Reconfigurable Spin Filters" *Nature Commun.*, **10**, 2455 (2019).

2) M. Suda, R. Kato, and H. M. Yamamoto "Light-induced superconductivity using a photo-active electric double layer" *Science*, **347**, 743-746 (2015).

Organic molecules are attracting recent attention as new ingredients of electronic and spintronic circuits. Their functionalities have been developed considerably, but are still to be explored and advanced. Our group focuses on a development of organic electronics in the next era by providing new mechanism and concepts of the device operation and fabrication. For example, an electronic phase transition is utilized for the ON/OFF switching of our field-effect-transistor (FET). This special FET is called an organic Mott-FET, where the conduction electrons in the organic semiconductor are solidified at the OFF state because of Coulomb repulsion among carriers. However, these solidified electrons can be melted by applying a gate voltage, and show an insulatorto-metal transition so-called Mott-transition to be switched to the ON state. Because of this phase transition, a large response of the device can be achieved, resulting in the highest device mobility ever observed for organic FETs. At the same time, Mott-transition is known for its relevance to superconductivity. Not only in organic materials but also in inorganic materials such as cuprates, Mott-transition is frequently associated with superconducting phase at low temperature. Indeed, our organic FET shows an electric-field-induced superconducting transition at low temperature. Besides these studies, we are also engaged in development of novel spintronics devices based on chiral organic molecules.

Photochromic SAM

Light-induced superconductivity at an organic interface. Self-assembled monolayer (SAM) of photochromic molecule can react with UV light to form electric field across the interface. This electric field invites excess carriers that induces superconductivity from Mott-insulating state.

 H. M. Yamamoto, M. Nakano, M. Suda, Y. Iwasa, M. Kawasaki and R. Kato "A strained organic field-effect transistor with a gate-tunable superconducting channel" *Nature Commun.* 4, 2379/1–2379/7 (2013).

古賀 信康(准教授) KOGA, Nobuyasu

2001年神戸大学理学部卒、 2006年神戸大学大学院自然 科学研究科修了、理学博士。 神戸大学博士研究員、京都大 学博士研究員、日本学術振興 会海外特別研究員、ワシントン 大学博士研究員を経て2014年 4月より現職。 TEL: 0564-55-7379

TEL. 0504-55-7379

mail: nkoga@ims.ac.jp

2001 B.S. Kobe University

2006 Ph.D. Kobe University

- 2003 JSPS Predoctoral Research Fellow
- 2006 Postdoctoral Fellow, Kobe University
- 2007 Postdoctoral Fellow, Kyoto University

JSPS Postdoctoral Fellow for Research Abroad University of Washington

2009 Postdoctoral Fellow, University of Washington

2014 Associate Professor, Institute for Molecular Science

> Associate Professor, The Graduate University for Advanced Studies

2018 Associate Professor, Exploratory Research Center on Life and Living Systems

Keywords>

Protein Design, Protein Folding, Structural Biology 階層分子システム解析研究部門 Trans-Hierarchical Molecular Systems

タンパク質分子の新規デザイン De novo Design of Protein Molecule

タンパク質分子は、アミノ酸配列に従ってほどけた紐の ような状態から自発的に折りたたまり特異的な3次元立 体構造を形成した後に、その3次元立体構造に基づき機 能を発現することで、生命システムにおけるパーツとして 様々な生命現象を生み出しています。現在私達が見てい る自然界のタンパク質の姿は、自然が何十億年という 時間をかけて精巧に創り上げた、いわば"完成品"であり、 それらを解析するのみではタンパク質分子の動作メカ ニズムの本質を明らかにすることは困難です。そこで 私達は、立体構造形成や機能発現に関する様々な仮説を 立て、それらを基にタンパク質分子を計算機上でデザイン し、そのデザインしたタンパク質分子が実際にどのように 振る舞うのかを生化学実験によって調べるというアプ ローチで研究を行っています。

私達は「アミノ酸配列はどのような原理により折りたた み後の構造を決定しているのか?」という問題に取り組ん できました。この問題が解明されれば、アミノ酸配列に基 づいて折りたたむ立体構造を予測することも、またその 逆に、望みの機能を発現する立体構造に折りたたむアミノ 酸配列を自在にデザインすることも可能になります。これ までの研究において、アミノ酸配列の詳細というよりも、 αヘリックス、βストランド、ループの長さや形状といった 主鎖構造が3次構造の決定に重要であることを発見し、 これらの発見を基にタンパク質デザイン技術を開発する ことで、様々なタンパク質構造のデザインに成功しました。 今後は、このデザイン技術を発展させることで、望みの 機能を持つタンパク質をデザインする技術の確立を目指 します。 Protein molecules spontaneously fold into unique three-dimensional structures specified by their amino acid sequences from random coils to carry out their functions. Many protein studies have been performed by analyzing naturally occurring proteins. However, it is difficult to reach fundamental working principles of protein molecules only by analyzing naturally occurring proteins, since they evolved in their particular environments spending billions of years. In our lab, we explore the principles by computationally designing protein molecules completely from scratch and experimentally assessing how they behave.

Protein design holds promise for applications ranging from catalysis to therapeutics. There has been considerable recent progress in computationally designing proteins with new functions. Many protein design studies have been conducted using naturally occurring protein structures as design scaffolds. However, since naturally occurring proteins have evolutionally optimized their structures for their functions, implementing new functions into the structures of naturally occurring proteins is difficult for most of cases. Rational methods for building any arbitrary protein structures completely from scratch provide us opportunities for creating new functional proteins. In our lab, we tackle to establish theories and technologies for designing any arbitrary protein structures precisely from scratch. The established methods will open up an avenue of rational design for novel functional proteins that will contribute to industry and therapeutics.

参考文献

 Rie Koga, Mami Yamamoto, Takahiro Kosugi, Naohiro Kobayashi, Toshihiko Sugiki, Toshimichi Fujiwara, <u>Nobuyasu Koga</u>, Robust folding of a de novo designed ideal protein even with most of the core mutated to valine. *Proc. Natl. Acad. Sci. USA*, **117**(49), 31149-31156, (2020).
 Rie Koga and <u>Nobuyasu Koga</u>, Consistency principle for protein design, *Biophys. Physicobiol.* **16**, 304-309 (2019).
 <u>Nobuyasu Koga</u>, Rie Tatsumi-Koga, Gaohua Liu, Rong Xiao, Thomas B. Acton, Gaetano T. Montelione and David Baker, Principles for designing ideal protein structures, *Nature* **491**(7423), 222-227 (2012).

4) Yu-Ru Lin, <u>Nobuyasu Koga</u>, Rie Tatsumi-Koga, Gaohua Liu, Amanda F. Clouser, Gaetano T. Montelione, David Baker, Control over overall shape and size in de novo designed proteins, *Proc. Natl. Acad. Sci. USA* **112**(40), E5478-5485 (2015).

岡本裕巳(教授) OKAMOTO, Hiromi

1983年東京大学理学部卒、 1985年同大学大学院理学系 研究科博士課程中退、1991年 理学博士。1985年分子科学研 究所助手、1990年東京大学理 学部助手、1993年同助教授を 経て、2000年11月より現職。 研究総主幹、およびメゾスコ ピック計測研究センター長。 TEL: 0564-55-7320 FAX: 0564-54-2254

mail: aho@ims.ac.jp

1983 B.S. The University of Tokyo 1991 Ph.D. The University of

- Tokyo 1985 Research Associate,
- Institute for Molecular Science
- 1990 Research Associate, The University of Tokyo
- 1993 Associate Professor, The University of Tokyo
- 2000 Professor, Institute for Molecular Science

Professor, The Graduate University for Advanced Studies

2012 Dean, School of Physical Sciences, The Graduate University for Advanced Studies (to 2014)

2016 Deputy Director General

参考文献

2017 Director, Center for Mesoscopic Sciences

(Keywords)
Near-Field Optical
Microscopy,
Plasmons,
Chirality

新しい光学顕微鏡でナノ物質の励起状態と キラリティを探る

Exploring Excited States and Chirality of Nanomaterials with Novel Optical Microscopes

従来の光学顕微鏡では、光の波長(可視光で0.5 µm 程度)より小さい形を見ることができませんが、近接場 光学顕微鏡という新しい方法によってナノメートルの物 質の観察が可能になりました。ナノサイズ物質のカラー 写真(スペクトル情報)を撮ることができ、また100兆分 の1秒単位の極めて短い時間内に起きる変化を、刻一 刻、場所ごとに調べることもできます。私たちは、貴金属 でできたナノ物質で、物質の特性に深く関わる「波動 関数」がこの方法で観察できることも見いだしました。 更に、円偏光という螺旋の性質を持つ光で近接場計測を することで、キラリティ(右手と左手のように、鏡像の関 係にあるが同一ではない形を持つこと)の性質を、ナノ 物質について場所ごとに調べることもできるようになり ました。このようにナノ物質の新しい性質を光で調べ、 制御する基礎的な研究を行っています。

貴金属ナノ微粒子をある一定の構造で集合させて配 列構造を作ると、光を照射したときに、局所的に非常に 強い光(金属微粒子のない場合に比べて、最大数百万 倍)が発生する場合があると考えられています。通常の 光学顕微鏡ではこのような光の場を観察することはで きませんが、私達は近接場光学顕微鏡を用いて、発生し た強い光の場を、実際にイメージとして観察しました。 例えば微粒子が2個連結した構造では、粒子間の隙間に 強い光が発生しているのが観察され、これは理論による 予測に良く一致します。また、同じ近接場光学顕微鏡を 用いた実験で、ナノサイズの孔を通ってくる光が、孔に 金属板で蓋をすると、かえって強くなるという、奇妙な 現象を見いだしました。解析の結果、貴金属の微粒子が 光を集める特異な性質が、この現象に深く関わることが わかってきました。

 H. Okamoto, T. Narushima, Y. Nishiyama, and K. Imura, "Local Optical Responses of Plasmon Resonances Visualised by Near-Field Optical Imaging," *Phys. Chem.*

2) H. Okamoto, "Local optical activity of nano- to

microscale materials and plasmons," J. Mater. Chem. C

3) S. Hashiyada, T. Narushima, and H. Okamoto, "Imaging

Chirality of Optical Fields near Achiral Metal nanostructures

Excited with Linearly Polarized Light," ACS Photon. 5,

4) K. Imura, K. Ueno, H. Misawa, and H. Okamoto, "Anomalous

Light Transmission from Plasmonic Capped Nano-Apertures,"

Chem. Phys. 17, 6192-6206 (2015).

7, 14771-14787 (2019)

1486-1492 (2018).

Nano Lett. 11, 960-965 (2011).

With the conventional optical microscope, we cannot observe shapes of matters smaller than the wavelength of light (~0.5 µm for visible light). Observation of nanomaterials became feasible with a new method of optical microscopy, called near-field optical microscopy. It enabled taking color photographs (i.e., spectral information) of nanomaterials. It also enabled observing dynamical behavior on the extremely short (10⁻¹⁴ s) timescale at each position on the nanomaterial. With this new microscopic method, we investigate fundamental characteristics of nanomaterials. We found that wave functions of noble metal nanostructures can be visualized. By adopting circularly polarized light, properties of chirality (non-superimposable feature of a matter on its mirror image) became accessible at each local position on nanomaterials.

We succeeded in visualizing the local field as an image with near-field optical microscopy. In the dimeric gold nanoparticles, strong optical field was observed at the interstitial site between the two particles. During the near-field measurement of gold nanodisk, we found a unique phenomenon that light coming through a nano-sized hole is enhanced when the hole is capped with a nanodisk. The result was interpreted as arising from the nature of noble metal particles to collect light.

Near-field optical images of various gold nanostructures. A: Single gold nanorod (length 540 nm). The amplitude of the wave function is visualized. B: Dimers of spherical gold nanoparticles (diameter 100 nm). Strong optical fields are observed in the interstitial sites. C: Island-like assembly of gold nanospheres (diameter 100 nm). Strong field is localized in the rim part. D: Chirality image of gold nanorectangle observed with circularly polarized light. Yellow and blue parts indicate opposite handedness of chirality. Although a rectangle is not chiral, strong local chirality is visualized in this image.

熊谷 崇(准教授) KUMAGAI, Takashi

2006年立命館大学理工学部 応用化学科卒、2010年マックス-プランク固体研究所研究生、 2011年京都大学大学院理学研 究科化学専攻博士課程修了、 理学博士。2008年日本学術 振興会特別研究員(DC1)。 2011年日本学術振興会海 外特別研究員(フリッツ-ハーバー研究所)。2013年 フリッツ-ハーバー研究所グ ループリーダー。2016年科学 技術振興機構さきがけ研究者 兼務(2020年まで)。2020年 北海道大学客員准教授。2020 年4月より現職。 TEL: 0564-55-7410

mail: kuma@ims.ac.jp

2006 B.S. Ritsumeikan University

2011 Ph.D. Kyoto University

2008 JSPS Research Fellow, Kyoto University

2011 JSPS Research Fellow, Fritz-Haber Institute

2013 Group leader, Fritz-Haber Institute

2020 Associate Professor, Institute for Molecular Science(additional post)

2020 Guest Professor, Hokkaido University

Keywords>

Scanning Probe Microscopy, Nanoscale Spectroscopy, Single-Molecule Chemistry ■広帯域相関計測解析研究部門 Division of Broadband Multiscale Analysis

走査プローブ顕微鏡の先端技術を基軸とし、 ナノ分子科学の最前線を切り開く Open a New Frontier of Nano-Science Using State-of-the-Art Scanning Probe Microscopy

個々の分子を直接観察し、それらを自在に操ることは 分子科学における夢の実験の一つです。1980年代に発 明された走査プローブ顕微鏡はこの夢を実現する究極 的な単分子計測へと発展し、物理、化学、生物、そして医 療にわたる幅広い分野で飛躍が期待されているナノサ イエンス・ナノテクノロジーの中心的技術として現在も 進化を続けています。10億分の1メートルというとても 小さな「ナノの世界」は科学者の知的好奇心をくすぐる 興味深い物理・化学現象が見られる学術研究のフロン ティアであるだけでなく、21世紀における革新的な超微 小デバイスやエネルギー変換技術の創出など現代社会 の課題に貢献できる大きな可能性を秘めています。

私たちは、走査プローブ顕微鏡の先端計測を基軸と し、ナノ分子科学の最前線を切り開くことを目指した研 究を行っています。ブラズモニクスと呼ばれるナノ スケールの光を操る技術と走査プローブ顕微鏡を融合 させることによってナノ物質や一分子の構造とダイナミ クスを分光学的に直接調べる新しい計測技術を開発し ました。これによって原子・分子レベルの時空間極限に おける究極的な顕微分光を実現し、局所的な構造の不 均一性とゆらぎの中から生まれる分子システム特有の 機能の本質を解き明かす研究を目指しています。

Single-molecule chemistry studied by scanning probe microscopy. The figure illustrates the experiment on the direct observation of single-molecule tautomerization in porphycene.^{51,61}

It has been a dream in molecular science to directly observe single molecules and control them at will. Scanning probe microscopy invented in 1980s has achieved this dream and has evolved as an ultimate tool for single-molecule chemistry in the last few decades. The family of scanning probe microscopy still rapidly develops to be a core technology in diverse areas of nano-science and technology. Small "nano-world (10⁻⁹ m)" is not only a frontier of academic researches where intriguing physical and chemical phenomena are observed, but also has big potentials for creation of innovative technologies in the 21st century which can contribute to significant challenges in human society.

We aim at opening up a new frontier of nanoscale molecular science using state-of-the-art scanning tunneling and atomic force microscopy. We challenge the development of ultimate optical spectromicroscopy in real-time and space at the atomic/molecular level, and elucidate fundamental mechanisms how local structural inhomogeneities and fluctuations in molecular systems determine their unique functions.

Direct observation of quantum dynamics. The figure shows scanning tunneling microscope image of single silver atom and porphycene molecules, where the double hydrogen transfer reaction occurring via quantum tunneling is directly visualized.⁴)

参考文献

1) S. Liu, M. Müller, Y. Sun, I. Hamada, A. Hammud, M. Wolf, T. Kumagai, Resolving the Correlation between Tip-Enhanced Resonance Raman Scattering and Local Electronic States with 1 nm Resolution. *Nano Lett.* **19**, 5725–5731 (2019).

2) H. Böckmann, S. Liu, M. Müller, A. Hammud, M. Wolf, T. Kumagai, Near-Field Manipulation in a Scanning Tunneling Microscope Junction with Plasmonic Fabry-Pérot Tips. *Nano Lett.* **19**, 3597–3602 (2019).

 H. Böckmann, S. Gawinkowski, J. Waluk, M.B. Raschke, M. Wolf, T. Kumagai, Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction. *Nano Lett.* **18**, 152–157 (2018).

M. Koch, M. Pagan, M. Persson, S. Gawinkowski, J. Waluk,
 T. Kumagai, Direct Observation of Double Hydrogen Transfer

via Quantum Tunneling in a Single Porphycene Molecule on a Ag(110) Surface. *J.Am.Chem.Soc.* **139**, 12681–12687 (2017). 5) J. N. Ladenthin, T. Frederiksen, M. Persson, J. C. Sharp, S. Gawinkowski, J. Waluk, T. Kumagai, Force-induced tautomerization in a single molecule. *Nature Chemistry* **8**, 935–940 (2016).

6) T. Kumagai, F. Hanke, S. Gawinkowski, J. Sharp, K. Kotsis, J. Waluk, M. Persson, L.Grill, Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. *Nature Chemistry* **6**, 41–46 (2014).

7) T. Kumagai, A. Shiotari, H. Okuyama, S. Hatta, T. Aruga, I. Hamada, T. Frederiksen, H. Ueba, Hydrogen relay reactions in real space. *Nature Materials* **11**, 167–172 (2012).

■特別研究部門 Advanced Molecular Science

錯体化学に立脚した自己集合分子システム
 Self-Assembling Molecular Systems Based on Coordination Chemistry

藤田 誠(卓越教授) FUJITA, Makoto

1980年千葉大学工学部卒。 1982年同工学研究科修士 課程修了。1987年東工大工 学博士。相模中央化学研究 所研究員、千葉大学助手、同 講師、同助教授、分子科学研 究所助教授、名古屋大学教 授を経て、2002年より東京 大学大学院工学系研究科 教授、2018年4月より現職を 兼任。

TEL: 0564-55-5580

mail: mfujita@ims.ac.jp

1980 BSc Chiba University 1982 MSc Chiba University 1982 Researcher, Sagami 1988 Chemical Research Center. 1987 Ph.D. Tokyo Institute of Technology 1988 Assist.Prof. to Assoc. 1997 Prof., Chiba University. 1997 Assoc. Prof., Inst. for 1999 Molecular Science (IMS) 1999 Professor, Nagoya 2002 University. 2002 Professor, The University of Tokyo 2018- Distinguished Professor

2018- Distinguished Professor, Institute for Molecular Science

⟨Keywords⟩ Self-Assembly, Nano-Space, Coordination Chemistry

本研究室では、「金属配位による自己集合」をキー ワードに新しい物質と機能の創成に挑んでいます。 これまでに、適度な結合力をもち、結合形成に明確な 方向性と結合数を持つ配位結合(金属イオンと有機 分子の相互作用)を自己集合の駆動力として活用する ことで、人工系でありながら安定でかつ精密な3次元 構造が狙いどおりに構築できることを数多く提示してき ました。現在ではこのような手法でつくられるナノス ケールの物質群、とりわけ内部空間を持つ中空化合物 の自己集合に着目して、ナノスケール材料の新しい設 計と合成、ならびにその特異な機能の開拓(新しい反応 の創出や物性の探索、自己集合の機構解明など)を 研究しています。最近では、M30L60やM48L96組成にも及 ぶ巨大中空錯体の構築にも成功しています。また、自己 集合による細孔性錯体の合成と、結晶空間での機能創 出にも取り組んでいます。ごく最近、細孔性錯体に溶液 状態から吸蔵された有機化合物が、細孔内で平衡の 位置に収まる現象に着目し、「試料の結晶化を必要とし ないX線構造解析手法(結晶スポンジ法)」を開発しま した。革新的な構造解析技術として、アカデミアのみな らず、微量成分の迅速構造決定を必要とする創薬や 食品などの産業分野からも高い注目を集めています。

Our laboratory is exploring the construction of new molecular materials through metal-directed self-assembly. By using coordination bonds with appropriate bond energy and well-defined geometries as the driving force of self-assembly, a variety of three-dimensional architectures have been constructed at will. Among these nanostructures, we are particularly interested in hollow frameworks with a large inner space, where new properties and functions are developed. Recent outstanding results include the self-assembly of gigantic M30L60 and M₄₈L₉₆ spherical complexes. We are also interested in reproducing solution reactions within the pore of self-assembled porous complexes. In due course, we have recently developed a new X-ray technique that does not require the crystallization of target compounds (crystalline sponge method). This innovative analysis method is attracting considerable interests of not only academia but also industries such as pharmaceutics and foods companies.

X-ray structure of M48L96 complex.

参考文献

1) Q.-F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi, and M. Fujita, "Self-Assembled $M_{24}L_{48}$ Polyhedra and Their Sharp Structural Switch upon Subtle Ligand Variation" *Science* **328**, 1144-1147 (2010).

 D. Fujita, K. Suzuki, S. Sato, M. Yagi-Utsumi, Y. Yamaguchi, N. Mizuno, T. Kumasaka, M. Takata, M. Noda, S. Uchiyama, K. Kato, and M.Fujita "Protein encapsulation within synthetic molecular hosts" *Nat. Commun.* **3**, 1093 (2012).
 Y. Inokuma, S. Yoshioka, J. Ariyoshi, T. Arai, Y. Hitora, K. Takada, S. Matsunaga, K. Rissanen, M. Fujita, "X-ray analysis on the nanogram to microgram scale using porous complexes" *Nature* **495**, 461-466 (2013).

4) D. Fujita, Y. Ueda, S. Sato, H. Yokoyama, N. Mizuno, T. Kumasaka, M. Fujita, "Self-assembly of $M_{30}L_{60}$ lcocidodecahedron" *Chem* 1, 91-101 (2016).

5) D. Fujita, Y. Ueda, S. Sato, N. Mizuno, T. Kumasaka, M. Fujita, "Self-Assembly of Tetravalent Goldberg Polyhedra from 144 Small Components" *Nature* **540**, 563-566 (2016).

木村真一(教授(深述)) KIMURA, Shinichi

1988年東北大学理学部物 理学第二学科卒、1991年 東北大学大学院理学研究 科物理学第二専攻博士課 程修了、理学博士。1991年 日本学術振興会特別研究 員(PD)、1993年神戸大学 助手、1993年分子科学研 究所助手、1998年神戸大 学助教授、2002年分子科 学研究所助教授/准教授、 2020年分子科学研究所教授 (クロスアポイントメント)。 mail: kimura@ims.ac.jp

1988 B.S. Tohoku University

1991	Ph.D. Tohoku University
1991	JSPS Postdoctoral
	Fellow, Tohoku University
1993	Research Associate,
	Kobe University

- 1993 Research Associate, Institute for Molecular Science
- 1998 Associate Professor, Kobe University
- 2002 Associate Professor, Institute for Molecular Science
- 2013 Professor,Osaka University
- 2020 Professor, Institute for Molecular Science (Cross Appointment)

〈Keywords〉

Condensed Matter, Biological Materials, Optical Property, Synchrotron Radiation,

Electron-Energy-Loss Spectroscopy ■特別研究部門(物質分子科学研究領域 電子構造研究部門) Advanced Molecular Science

多次元分光計測法による新奇物性開拓 Exploring Novel Physical Properties by Multi-Dimensional Spectroscopy

固体の特徴的な物性である電気伝導や磁石としての 性質、さらには抵抗なく電流が永久に流れ続ける超伝 導、また生命の営みの元となっている酸化還元反応や光 合成など、物性の出現や生命現象に現れる化学反応の 起源は、物質中のミクロな世界である電子の電荷やス ピンの動き、格子・分子の振動、またはそれらの間の量 子力学的な相互作用です。つまり、これらのミクロな情 報を、空間・時間・運動量・スピン方向・エネルギーの全 て(多次元)に対して観測し可視化することができれば、 物性や生命現象の起源を知るばかりでなく、新たな機能 性の予測や創造も可能になります。

このミクロな情報を可視化するためには、光や電子な どの量子ビームを使った方法が有効です。特に、相互作 用した電子(準粒子)の観測には、光電子分光や赤外・テ ラヘルツ分光が有効です。そこで、これまで得られな かった新しい情報を得るために、電子線加速器から発生 するシンクロトロン光やレーザーを使った新たな分光法 やイメージング手法を開発しています。また、電気伝導 やスピン波、格子振動などの集団励起の観測には、電子 線を使った電子エネルギー損失分光法が有効であり、ス ピン偏極高輝度電子源を使った新しい分光法の開発に 着手しています。

このように、私達は、シンクロトロン光や高輝度電子源 などの量子ビームを、物質の機能性の起源を見る新しい 「目」として用いることで、これまで見えなかった電子状 態の変化を可視化し、そこで得られた情報を元にして新 しい機能性の創造を目指しています。

Physical and chemical properties of solids, such as conductivity, magnetism, superconductivity and chemical reactions, and also life phenomena, such as redox and photosynthesis, originate from microscopic electronic and vibrational properties in materials and their quantum mechanical interactions. To clarify the microscopic information of electronic and other states provides us not only the information of the origins of the physical properties and life phenomena but also the expectation and creation of novel functional properties. To visualize of the change of the microscopic state, we also develop novel spectroscopic techniques using synchrotron radiation, high brilliant electron beams and other so-called quantum beams. On the basis of the obtained information of electronic structures, we are aiming to develop novel physical properties of new materials.

Resonant electron-energy-loss spectroscopy (rEELS) apparatus developed by our group. The apparatus consists of a high-brilliant spin-polarized electron gun and a photoelectron spectrometer.

参考文献

 P. N. Nguyen, H. Watanabe, Y. Tamaki, O. Ishitani, S. Kimura, "Relaxation dynamics of [Re(CO)₂(bpy){P(OEt)₃}₂](PF₆) in TEOA solvent measured by time-resolved attenuated total reflection terahertz spectroscopy", *Sci. Rep.* 9, 11772 (2019).
 Y. Ohtsubo, Y. Yamashita, K. Hagiwara, S. Ideta, K. Tanaka, R. Yukawa, K. Horiba, H. Kumigashira, K. Miyamoto, T. Okuda, W. Hirano, F. Iga, S. Kimura, "Non-trivial surface states of samarium hexaboride at the (111) surface", *Nat. Commun.* 10, 2298 (2019).

K. Hagiwara, Y. Ohtsubo, M. Matsunami, S. Ideta,
 K. Tanaka, H. Miyazaki, J. E. Rault, P. Le Fèvre, F. Bertran,
 A. Taleb-Ibrahimi, R. Yukawa, M. Kobayashi, K. Horiba,

H. Kumigashira, K. Sumida, T. Okuda, F. Iga, S. Kimura, "Surface Kondo effect and non-trivial metallic state of the Kondo insulator YbB₁₂", *Nat. Commun.* **7**, 12690 (2016).

4) S. Kimura, T. Iizuka, H. Miyazaki, A. Irizawa, Y. Muro,
T. Takabatake, "Electronic-Structure-Driven Magnetic Ordering in a Kondo Semiconductor CeOs₂Al₁₀", *Phys. Rev. Lett.* **106**, 056404 (2011).

5) S. Kimura, T. Ito, M. Sakai, E. Nakamura, N. Kondo, K. Hayashi, T. Horigome, M. Hosaka, M. Katoh, T. Goto, T. Ejima, K. Soda, "SAMRAI: A variably polarized angleresolved photoemission beamline in the VUV region at UVSOR-II", *Rev. Sci. Instrum.* **81**, 053104 (2010).

高谷光(准教授(探颂)) TAKAYA, Hikaru

1993年大阪大学基礎工学 部卒、1998年大阪大学大 学院基礎工学研究科博士 後期課程修了、同大学院助 手、2002年Scripps研究所 招へい研究員(文部省在外 研究員)、2008年京都大学 化学研究所准教授、2019 年分子科学研究所特別研 究部門准教授。

TEL: 0564-55-7480

mail: takaya@ims.ac.jp

1993 B.S. Osaka University 1998 Ph.D. Osaka University

1998 Assistant Professor, Graduate School of Engineering Science, Osaka University

2002 Guest Scientist, The Scripps Research Institute,

2008 Associate Professor, Institute for Chemical Research, Kyoto University

2019 Associate Professor, Institute for Molecular Science

XAFA, Radiant Light Spectroscopy, Homogeneous Catalysis, Organometallic Chemistry, <u>Element Strategy Initiative</u>

(Keywords)

■特別研究部門(光分子科学研究領域 光分子科学第三研究部門) Advanced Molecular Science

放射光を利用して高機能触媒を開発する Catalysis Science and Technology based on XAFS and Related Spectroscopy using Synchrotron Radiation

私達の研究グループでは人類の物質生産を支えるの に必要な触媒や触媒技術を研究しています。優れた触 媒を発見・開発するためには,触媒が分子や物質にどの ように作用しているかを調べ、原子・分子レベルで反応 機構を明らかにする必要があります。しかしながら、触媒 分子の大きさは10⁻⁹m程度と極めて小さく、直接観るこ とはもちろん、顕微鏡などでも見ることができません。 我々は、分子科学研究所のUVSORという放射光施設の 強いX線を利用して、触媒分子を観る方法について研究 を進めています。UVSORの強いX線を用いるX線吸収 分光(XAS)を利用すると、反応溶液中にある触媒分子 の構造や動きを精密に知ることができます。現在、我々 はこのXASを用いて、特に鉄やニッケルの触媒作用の解 明に取組んでいます。鉄やニッケルは生元素と呼ばれ、 生物が普遍的に利用している毒性の低い金属であり、従 来まで人類が用いてきた白金やパラジウムといった貴 金属と比べて100億倍も豊富に存在する元素です。その ため、資源・環境問題に配慮した未来社会を支える触媒 として期待されていますが、水や空気に極端に不安定で あること、強い磁性を持つことから、今まで知られている 手法では構造や作用を調べることが難しく研究が遅れ ています。UVSORの強いX線によって、これら触媒が働

く仕組みを理解できれば、医薬 品や電子材料の原料となる有機 分子を今まで以上に効率良く安 全に製造でき、触媒科学を通じ てSDGs達成に貢献できること となります。

For future sustainable development, we promote research development of advanced catalysts based on element strategy criteria. Non-precious metal such as iron, nickel, cobalt, and copper catalysts are investigated for synthetic transformation of various organic molecules related to pharmaceutical and photoelectronic materials. To elucidate the precise catalytic properties and mechanism, X-ray absorption spectroscopy and various radiant right spectroscopies provided at UVSOR are used, where development of a solution-phase in situ XAS spectroscopic techniques and system will be intensively conducted for the study of homogeneous organometallic catalysts. Multidisciplinary research covered on DFT and XAS spectroscopy is also conducted to achieve an efficient structural determination technique being never accessible by the conventional XAS-based structural analysis. Using these cutting-edge spectroscopic technologies, we aim to promote innovative catalyst research which enable us highly efficient transformation of extremely unreactive organic molecules such as simple aromatic compounds, CO₂, and biomass into valuable functional materials.

a) Innovative catalysis development based on radiant right spectroscopyb) XAFS-based mechanistic study on iron-catalyzed cross-coupling reaction

参考文献

 L. O. Benjamin, <u>H. Takaya</u>, T. Uemura, "Polymer Guest Directing the Solid-State Conversion of a Metal-Organic Framework", *J. Am. Chem. Soc.*, **141**, 14549–14553 (2019).
 R. Agata, <u>H. Takaya</u>, T. Iwamoto, T. Hatakeyama, K. Takeuchi, N. Nakatani, M. Nakamura,* "Difluorido Ferrate-Catalyzed Cross-Coupling Reaction of Deactivated Aryl Chlorides with a Variety of Alkyl Grignard Reagents", *Bull. Chem. Soc. Jpn.* **92**, 381-390 (2019). BCSJ賞, Front cover.
 H. Masafumi,* K. Sano, Y. Kanazawa, N. Komine, Z. Maeno, T. Mitsudome,* <u>H. Takaya</u>,* "Mechanistic Insights on Pd/Cu-Catalyzed Dehydrogenative Coupling of Dimethyl Phthalate", *ACS Catl.*, **8**, 5827–5841 (2018).

 R. Yoshida, K. Isozaki, T. Yokoi, N. Yasuda, K. Sadakane,
 T. Iwamoto, <u>H. Takaya</u>,* M. Nakamura,* "ONO-pincer Ruthenium Complex-bound Norvaline for Efficient Catalytic Oxidation of Methoxybenzenes with Hydrogen Peroxide", *Org. Biomol. Chem.*, **14**, 7468–7479 (2016). Front cover 5) <u>H. Takaya</u>,* S. Nakajima, N. Nakagawa, K. Isozaki, T. Iwamoto, R. Imayoshi, N. Gower, L. Adak, T. Hatakeyama, T. Honma, M. Takagi, Y. Sunada, H. Nagashima, D. Hashizume, O. Takahashi, M. Nakamura,* "Investigation of Organoiron Catalysis in Kumada–Tamao–Corriu-Type Cross-Coupling Reaction Assisted by Solution-Phase X-ray Absorption Spectroscopy", *Bull. Chem. Soc. Jpn.*, **88**, 410–418 (2015). BCSJ賞, Front cover.

6) <u>H. Takaya</u>, "Metal Array Fabrication based on Self-Assembly of Metalated Amino Acids and Peptides", In *Adbanced in Bioorganometallic Chemistry*; T. Hirao, Ed.; Elsevier: 2018, Chapter 4, pp. 49–60 (2018).

平等 拓範(特任教授) TAIRA, Takunori

1983年福井大学卒、1985年福井 大学大学院修士課程修了、同年 三菱電機(株)LSI研究所研究員、 1989年福井大学工学部助手、 1998年2月分子科学研究所准 教授、2018年10月より理化学研 究所グループディレクター、 2019年4月より現職。2004年 平成16年度文部科学大臣賞、 2008年(財)光産業技術振興協会 第24回櫻井健二郎氏記念賞、 2010年米国光学会フェロー、 2012年国際光工学会フェロー、 2014年米国電気電子学会フェロー、 2018年IAPLEフェロー、 2019年レーザー学会フェロー。 TEL: 0564-55-7346 FAX: 0564-53-5727 mail: taira@ims.ac.jp

1983 B.A. Fukui University

1985 M.Sc. Fukui University

1996 Ph.D. Tohoku University

1985-Researcher:LSI Research and 1989 Development Laboratory, Mitsubishi Electric Corp.,

1989 Research Associate: Fukui University.

1993 Visiting Researcher: Ginzton Laboratory, Stanford University

1998 Associate Professor: National Institutes of Natural Sciences, Institute for Molecular Science

- 2006 Invited Professor: Pierre& Marie Curie University (Paris VI), Paris, France.
- 2011 Invited Professor, University Joseph Fourier, Grenoble, France.
- 2013 Invited Professor, ENSCP-ChimieParisTech, Paris.France.

2018 Group Director, RIKEN SPring-8 Center

2019 Project Professor, Institute for Molecular Science

> OSA, SPIE, IEEE, IAPLE, and LSJ Fellow

Keywords

Solid-State Lasers, Nonlinear Optics, Micro Solid-State Photonics ■社会連携研究部門 Division of Research Innovation and Collaboration

マイクロ固体フォトニクスの研究 Micro Solid-State Photonics

光の波長と同程度のミクロンオーダーで物質・材料の 性質を制御する事で光波を高度に操る"マイクロ固体 フォトニクス"に関する研究を展開しています。マイクロ ドメイン制御で物質に新たな光機能が発現でき、マイク ロ共振器による高コヒーレント光・高輝度光発生が望め るようになりました1-5)。そして新材料レーザーセラミック スの発掘、非線形素子の開発を含めた物質・材料研究の 成果としてマイクロチップレーザーによる世界初の自動 車のエンジン点火⁶⁻⁸⁾、真空紫外の波長118nm⁹⁾からコ ヒーレンス長に合せマイクロドメイン分極を制御する 擬似位相整合(QPM)による新たな非線形素子の開発 もあり波長11µmまでの中赤外4),10)、さらに波長 0.1-0.8mm^{11),12)}とTHz波からミリ波に至る広帯域な高 効率波長変換などを実証してきました。そして近年、表 面活性接合(SAB)に成功する事で一体型多ディスク レーザー構造が可能となり可能性が広がりました13。この 接合による分布面冷却(DFC)多ディスクまたはチップ 利得媒質構造は、小型高利得構成で、高出力・高強度 レーザーが望めます。一方、多数の薄板水晶を張り合わせ たQPM-水晶は高耐性で有るだけで無く固体材料での 真空紫外までの波長変換素子となり得ます14)。このよう に物質・材料を制御する手法を極める事で、モジュール 化された小型集積レーザー(TILA)による極限的な高輝 度固体レーザーが望め、理研と連携し卓上XFEL11),15),16) を可能とするレーザー駆動電子加速を推進させること で分子科学に新展開をもたらすだけで無く、TILAコン ソーシアム17と連携する事でイノベーション創出にも貢 献できると期待しています (Fig. 1)。

"Micro Solid-State Photonics" based on the micro domain structure and boundary controlled materials, opens new horizon in the laser science. The engineered materials of micro and/or microchip solid-state, ceramic and single-crystal, lasers can provide excellent spatial mode quality and narrow linewidths with enough power¹⁻⁵⁾. High-brightness nature of these lasers has allowed efficient light-matter interaction and wavelength extension by nonlinear frequency conversion: the world first YAG ceramic microchip laser ignited car⁶⁻⁸⁾, highly efficiency broad frequency conversions from the wavelength of 118 nm VUV⁹⁾ until MIR of 11µm^{4),10)}, in addition THz to millimeter wave of 0.1-0.8mm^{11),12)}, and so on. Here, the quasi phase matching (QPM) is an attractive technique for compensating phase velocity dispersion in frequency conversion. Lately, we propose a new architecture to realize a monolithic multi-disk laser by the surface activated bonding (SAB)¹³⁾. This multiple thin-disk or chip gain medium for distributed face cooling (DFC) structure can manage the high-power and high-field laser with high-gain compact system. Besides, QPM-structured crystal quartz constructed by multi-plate stacking could be promising as a high-power and reliable VUV frequency conversion devices¹⁴⁾. These downsized and modularized tiny integrated lasers (TILA) promise the extremely high-brightness lasers to open up the new science, such as laser driven electron accelerator toward table-top XFEL with RIKEN SPring-8 Center^{11),15),16),} and innovation by the compact power laser cooperation with TILA consortium¹⁷ (Fig. 1).

Fig. 1 TILA consortium toward "Laser Science and Innovation" by micro solid-state photonics.

参考文献

1) T. Taira, et al., Opt. Lett. 16 (24) 1955 (1991).

2) T. Taira, et al., *IEEE J. Sel. Top. Quantum Electron.* **3** (1) 100 (1997).

3) T. Taira, IEEE J. Sel. Top. Quantum Electron. **13** (3) 798 (2007).

4) T. Taira, Opt. Mater. Express 1 (5) 1040 (2011).

5) Y. Sato, et al., Scientific Reports 7, 10732 (2017).

6) H. Sakai, et al., Opt. Express 16 (24) 19891 (2008).

7) M. Tsunekane, et al., *IEEE J. Quantum Electron.* **46** (2) 277 (2010).

8) T. Taira, et al., *The 1st Laser Ignition Conference* '13, OPIC '13, Yokohama, April 23-26, LIC3-1 (2013).

9) R. Bhandari, et al., *Opt. Express* 21 (23) 28849 (2013).
10) M. Miyazaki, et al., *Phys. Chem. Chem. Phys.* 11, 6098 (2009).

11) S. Hayashi, et al., *Scientific Reports* 4, 5045 (2014).
12) S.W. Jolly, et al., *Nature Commun.* 10 (2591), 1 (2019).
13) L. Zheng, et al., *Opt. Mater. Express* 7 (9), 3214 (2017).
14) H. Ishizuki, et al., *Opt. Mater. Express* 8 (5), 1259 (2018).
15) N.H. Matlis, et al., *Nuclear Inst. and Methods in Physics Research A*, 909, 27 (2018).

16) http://www.riken.jp/en/research/labs/rsc/innov_light_ src/laser_drive_electron_accel_tech/

17) https://tila.ims.ac.jp/en/

共同利用・共同研究をささえる最先端の研究設備

State-of-the-art facilities supporting cutting-edge research

研究施設

極端紫外光研究施設 UVSOR Synchrotron Facility

光は、その波長によって、赤外線、可視光線、紫外線、極端紫外線、X線、と 様々な名前で呼ばれます。この様々な波長域の光を一度に出すことの できる装置がシンクロトロン光源です。高エネルギーの電子ビームが高磁 場中で発するシンクロトロン光は、あらゆる波長域において高強度で指 向性が高く、分子科学を始め幅広い研究分野で利用されています。分子 科学研究所の極端紫外光研究施設は1983年に稼働を始めたシンクロ トロン光源ですが、幾度かの改良を経て、現在でも、極端紫外線から赤外線・ テラヘルツ波に至る低エネルギーのシンクロトロン光源として世界最高 水準の高輝度性を誇っています。その特性を活かして、物質の機能性の起源 である電子状態の直接観測が行われています。UVSORという愛称で 世界的に知られ、国内のみならず世界各地から利用者を受け入れています。

Light is called with various names such as infrared, visible, ultraviolet, vacuum-ultraviolet and X-ray, depending on its wavelength. A synchrotron light source is capable of producing light in the ultra-wide wavelength range from infrared to X-rays.

Synchrotron light radiated by high energy electrons traveling in a strong magnetic field is intense and highly collimated. It is widely used in various research fields including molecular science. In IMS, a synchrotron light source has been operational since 1983. After several upgrades, it is still the brightest in the world among low energy synchrotron light sources. By utilizing its excellent performance, the electronic structure that is the origin of the functionalities of solids is directly observed. This facility is called UVSOR and is used by many researchers not only from our country but also from overseas.

さまざまな材料のナノ構造を 視覚化・元素識別するための 走査型透過X線顕微鏡装置

Scanning transmission X-ray microscope for visualizing nanostructures of various materials with elemental resolution

機器センター Instrument Center

機器センターは分子スケールナノサイエンスセンターと分子制御レー ザー開発研究センターの汎用機器を統合して、平成19年4月に新たに発 足しました。機器センターでの主たる汎用機器は山手地区のNMR、質 量分析装置、粉末X線回折装置、円二色性分光装置、明大寺地区の ESR、SQUID磁束計、X線回折装置(粉末、単結晶)、波長可変ピコ秒 レーザーシステム、蛍光分光装置、紫外可視近赤外分光装置などです。 また大学連携研究設備ネットワーク事業を推進し、各種講習会の実施 や、機器利用の予約・課金webシステムを提供し、全国的な汎用機器の 共同利用を支援しています。平成27年度からはナノプラットフォーム事 業が統合され、施設利用による共用設備運用に加えて、協力研究を通じ て多くの先端機器が利用可能となっています。

Instrument Center was established in 2007 by integrating two research centers in IMS. The main instruments maintained in YAMATE campus are: NMR, MALDI, X-ray diffractometers, etc; in MYODAIJI: ESR, SQUID, SEM, Spectrometers (FTIR, UV-vis, ESCA, ARUPS), etc. The center organizes the Inter-University Network for Common Utilization of Research Equipments and Nanotechnology Platform Program supported by MEXT.

CCD単結晶X線解析計 CCD X-ray Diffractometer.

研究施設

装置開発室 Equipment Development Center

装置開発室では、分子科学研究に必要な様々な実験装置の製作・開発を 行っています。機械、エレクトロニクス、微細加工などの設備を有し、 高度な技術・技能を有する技術者が配属されています。研究所創設当初 から、所内外の研究者と密接に連携し、独創的な研究を可能とする 様々な実験装置の開発を手掛けてきました。将来の分子科学研究を 支えるために、より先進的な技術の習得にも積極的に取り組んでいます。 研究者や学生に対して機械加工や電子回路工作に関する講習会を開催し、 技術の普及にも努めています。

Equipment development center provides technical services to support advanced molecular sciences with new equipments. Machining, electronics, micro-patterning, and 3D-printing facilities are maintained by skilled technical staffs who help researchers design and fabricate state-of-the-art equipment.

岡崎共通研究施設

計算科学研究センター Research Center for Computational Science

我が国唯一の分子科学分野の理論計算科学研究のための共同利用施設です。先導的な学術研究の発信はもとより、岡崎地区の3研究所と全国の分子科学とバイオサイエンスの研究者に対して、大学等では不可能な大規模計算を実行できるハード環境と様々なプログラムソフトを提供しています。平成29年10月からは従前の2システムを統合化した総理論演算性能が4PFlopsの「高性能分子シミュレータ」の運用を開始し、大規模な計算が実行できる環境を提供しています。

Research Center for Computational Science provides state-of-the-art computational resources to academic researchers in molecular science and related fields, e.g. quantum chemistry, molecular simulations, and solid state physics. The computer systems consist of NEC LX406R-2, LX110Rh-1 and LX108Th-4G.Total performance is 4PFlops.

私たちの使命 Our Mission

国内外の研究者への共同研究・共同利用支援に関する事業 Serving as a core organization for domestic and international collaborations

国内・海外の研究者が分子研を訪れ、施設や機器を利用しています。

分子科学研究所は、UVSOR、および、計算科学研究センターなどの大型施設を、「施設利用」とし て当該分野コミュニティーの研究者に広く利用して頂いています。また、メゾスコピック計測 研究センター、機器センターなどの研究センター、装置開発室において、先端的な装置を利用し て共同で研究を進めて頂くとともに、測定法や物質合成手法の開発などを支援しています。さら に、これらセンターならびに各研究領域における研究資源を利用しながら、所内の教員と複数 の所外研究者との連携の下で行う「課題研究」、所内の教員と一対一で共同研究を行う「協力研 究」も実施しています。また、「大学連携研究設備ネットワーク」の中核拠点として、分子科学 領域における先端的研究設備の相互利用による共同研究の促進にも取組んでいます。これら のハードウェアを中心とした共同利用と共に、特定の課題に関する討論を深め、更なる新しい発 展を探るための有効な手段として、所外の研究者の提案をもとにした研究集会である「分子研研究

会」、「分子科学国際研究集会(岡 崎コンファレンス)」を毎年複数回 開催しています。

共同利用国際研究 International Joint Research

UVSORをはじめ、所内の最先端施設・装置を海外の研 究者に利用開放し、共同利用・共同研究を行っています。 30件実施(2019.10-2020.9)

IMS opens up state-of-the-art facilities including UVSOR for collaborative and/or joint researches. 30 projects (October 2019 - September 2020)

■共同利用研究実施一覧 2020年度

実施内容	件数	人数
課題研究	2	5
協力研究	51	106
協力研究(ナノプラット)	48	94
研究会	4	89
若手研究活動支援	1	42
UVSOR施設利用	104	566
UVSOR施設利用(ナノプラット)	2	7
機器センター施設利用(ナノプラット)	139	275
装置開発室施設利用	1	2
装置開発室施設利用(ナノプラット)	3	24
計算科学研究センター施設利用	269	1,142
所長招へい	10	10
合 計	634	2,362

大学連携研究設備ネットワークの構築 Inter-University Network for Common Utilization of Research Equipments (EqNW)

分子科学研究所は、広く国内の研究者がインターネットを通じて大学の研究設備を有効に活用す るための組織である「大学連携研究設備ネットワークによる設備相互利用と共同研究の促進」 事業の中核機関を務めています。本ネットワークには、全国の大学や企業を含めた約300の機関 が参加しており、2,700台以上の研究設備の利用案内とそのうち750台以上の設備について の利用予約・課金システムを運用しています。14,000名を超える研究者がユーザーとして登録され ており、年間170,000件以上の利用実績があります。一部は依頼計測も可能です。自前で高価な 装置を購入することなく先端測定が行える研究支援事業として広く有効に活用されています。

•More than 14,000 registered users

·Mutual utilization among national universities (since FY2007) ·Open for private universities, public institutes, private companies (more than 300 organizations)

ナノテクノロジープラットフォーム分子・物質合成 MEXT Nanotechnology Platform Molecule & Material Synthesis Platform

平成24年度から始まった文科省ナノテクノロジープラットフォーム事業は、 最先端の研究設備とその活用のノウハウを有する機関が緊密に連携して 全国的な設備の共用体制を共同で構築し、産業界や研究現場が有する技 術的課題の解決へのアプローチを提供するとともに産学官連携や異分野 融合を推進するものです。本事業では、微細構造解析、微細加工、分子・物

質合成の3つの全国規模のプラットフォームが構築され、分子研は、分子・ 物質合成の代表機関と実施機関を担い、高性能かつ安全安心な次世代分 子物質材料創成のための研究支援を実施しています。詳細は下記URLに アクセスの上ご参照ください。

•MEXT Nanotechnology Platform (FY2012-2021) ·IMS as the core representative organization of the Molecule & Material Synthesis Platform ·Open for domestic and international universities, institutes & private companies

[事業全体] https://nanonet.mext.go.jp/ [代表機関] https://mms-platform.com/

[分子研] https://nanoims.ims.ac.jp/ims/

分子研の事業

分子科学を中心とした基礎科学研究の振興に資する人事施策を検討、

共同利用機関としての新たな取り組みを始めています。

Institute for Molecular Science (IMS) has strengthened its personnel affairs measures as an Inter-University Research Institute by the following new approaches, to contribute to the promotion of the basic research mainly in molecular science field.

大学の研究活動の活性化に貢献する施策として、新しい人事交流制度を開始しました。

具体的には、以下の2制度を試行し、分子科学分野のトップレベル研究の支援と、研究者層の厚みを増強するための支援を行います。

特別研究部門

1.分子科学分野において最先端の科学を切り拓く世界的研究者を「卓越教授」として招聘し、研究に専念できる環境を提供します。

2.分子科学分野において独創的な研究を行っている大学教員をクロスアポイントメントで招聘し、分子研の先端設備を使った研究に 集中的に取り組む場を提供します。

Division of Advanced Molecular Science

1. IMS invites Distinguished Professor who leads world-class unique research in the field of molecular science, and provides environment to devote themselves to research.

2. IMS invites Adjunct Professors from universities and institutes, who leads a unique research in molecular science utilizing state-of-the-art facilities of IMS, by Cross-Appointment system.

分子科学研究所と企業などからの資金によって運営するオープンイノベーション拠点とし 産官学の共同研究を実施します。

Institute for Molecular Science (IMS) has launched a division for research collaboration to commercialize the latest technology by running a project with industrial funding along with the government support. As a center of open innovations, we will expand it and strengthen the cooperative relationship among Industry, Academia and Government.

分子科学研究所では、分子科学の研究の切り口を増やし、研究分野の裾野を拡げる取り組みの一つとして、複数の企業等外部機関からの会費により運営す るオープンイノベーションの拠点「社会連携研究部門」を設置することといたしました。本研究部門では、日本における超小型レーザー技術によるイノベー ションを図ることとし、産学官を交えた知識集約型のレーザー研究開発イノベーション拠点「小型集積レーザーコンソーシアム(TILA: Tiny Integrated Laser)」を形成し、本趣旨に賛同する複数の企業等外部機関と緊密に連携を取りなから、新たな産学連携研究の創出を目指します。

Division of Research, Innovation and Collaboration has been established in Institute for Molecular Science as one of the projects to open up the new aspects of researches on molecular science and to expand the range of the research fields. The division is a center of open innovations and run by membership fees from outside organizations such as commercial enterprises. TILA, Tiny Integrated Laser, Consortium has been formed in the division with the aim of making innovations based on ultra-small laser technologies in Japan. TILA Consortium is an industry-academia-government, knowledge-intensive innovation center of research and development on lasers and cooperates closely with the outside organizations which approve of the above purpose and is intended for creating new industry-academia joint researches.

世界に広がるネットワークの構築 Constructing a world-wide research network

分子科学研究所は、国際的な分子科学研究の中核拠点としても積極的な役割を果たしています。

国際共同研究拠点の形成、若手研究者の人材育成 International Collaboration Programs

分子科学研究所は創設以来、多くの国際会議の開催、多数の外国人研究 員の受け入れ、および国際共同研究事業の積極的な推進など、国際的に 開かれた研究所としての役割を担ってきました。国際共同研究を更に推 進するために、平成16年度より独自の国際共同研究事業を開始していま す。この事業では、(1)分子研国際インターンシッププログラム、(2)分子 研国際若手研究者招へいプログラム等の特長ある国際共同を推進してい ます。アジア各国および欧米の研究教育拠点等と学術交流協定を締結し、 国際共同を重点化しています。

外国人研究者の国別内訳(20)20年度)	Visiting Foreign Researchers (FY2020)
韓国 Korea	1	
タイ Thailand	5	
台湾 Taiwan	2	
中国 China	2	
ドイツ Germany	1	
フィンランド Finland	1	
インドネシア Indonesia	1	
合計 Total 13	3(人)	

IMS has accepted many foreign scientists and hosted numerous international conferences since its establishment and is now widely recognized as a leading institute that promotes firm international collaborations. In 2013, IMS initiated a new program to further promote international collaboration. As a part of this new program, IMS has been promoting the IMS International Internship Program for Foreign Graduate Students and the IMS International Fellowship Program for Young Foreign Researchers, through several foreign nominating institutions and universities.

学術国際交流協定に基づく交流(11機関) International Exchange Agreements (11 organizations)

フランスフランス国立パリ高等化学学校	France École Nationale Supérieure de Chimie de Paris
ドイツ	Germany
ベルリン自由大学	Freie Universität Berlin
ペーター・グリュンベルグ研究所	Peter Grünberg Institute
フィンランド	Finland
オウル大学	University of Oulu
タイ	Thailand
タイ国立ナノテクノロジー研究センター	National Nanotechnology Center, National Science and Technology Development Agency
インド	India
インド工科大学カーンプル校	Indian Institute of Technology Kanpur
中国	China
固体表面物理化学国家重点実験室、厦門大学	State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Xiamen University
台湾 中央研究院原子與分子科学研究所	Taiwan Institute of Atomic and Molecular Sciences, Academia Sinica
	National Chiao Tung University Korea
韓国化学会物理化学ディビィジョン	Physical Chemistry Division, Korean Chemical Society
成均館大学	Sungkyunkwan University

総研大の交流(5機関) Exchange Programs of SOKENDAI (5 Universities)

タイ

チュラロンコーン大学 理学部 カセサート大学 理学部 ヴィダヤシリメディー科学技術大学院大学

マレーシア マラヤ大学 理学部

ドイツ

イエナ大学固体物理学研究所

Thailand

Chulalongkorn University / Faculty of Science Kasetsart University / Faculty of Science Vidyasirimedhi Institute of Science and Technology (VISTEC) Malaysia

University of Malaya / Faculty of Science

Germany

Friedrich Schiller University Jena / Institute for Solid State Physics

充実した研究環境が育む分子科学の担い手

Excellent environment nurtures next generation of molecular scientists

人材育成·大学院教育■

本研究所は、分子科学における最先端の研究を推進するだけではなく、学生の教育を行い、明日の分子 科学を担っていく人材を育成することにも力を入れています。

総合研究大学院大学 SOKENDAI The Graduate University for Advanced Studies

分子科学研究所は、総合研究大学院大学の物理科学研究科におい て構造分子科学専攻と機能分子科学専攻を担当し、次代を担う若 手研究者の育成にも積極的に取り組んでおり、大学や民間で活躍 する多くの卒業生を輩出しています。

The graduate students of the Graduate University for Advanced Studies (SOKENDAI) take molecular science classes, including chemical science, physical science, material science, and bioscience.

研究所で学ぶためには Admissions

分子科学研究所で学ぶためには、総合研究大学院大学の物理科学研 究科・構造分子科学専攻もしくは機能分子科学専攻へ入学していた だくことになります。

※すでに大学院に在籍している学生の方は「特別共同利用研究員」として 分子研で学ぶことが出来ます。

If you wish to study at IMS, you need to apply for admission to either the Department of Structural Molecular Science or the Department of Functional Molecular Science of SOKENDAI.

充実した研究指導と研究設備 High quality advising and facilities

実験、研究に集中 できる環境 Excellent environment for research

図書、オンライン ジャーナルの取り揃え Extensive library and online journals

国際学会・共同研究など 活発な国際交流 International conferences and joint researches

生きた英会話・プレゼン 講座の英語教室 Technical and scientific

Technical and scientific English education

総合研究大学院大学とは? About SOKENDAI?

総合研究大学院大学(総研大)は昭和 63年に、全国の大学共同利用機関を 基盤機関として、新しい理念と組織の 下に創設された学部を持たない大学 院のみの大学です。本部を神奈川県 葉山町に置き、学生のみならず研究者

自身の総合性と学際性を高めることを目指して、海外インターンシップ、 学生セミナー、国際シンボジウム、共同研究等々のユニークな活動を本部で 行いつつ、平素の授業や研究活動は各基盤研究機関において行っています。

SOKENDAI [The Graduate University for Advanced Studies] was founded on October 1, 1988 as one of the national universities of Japan. The headquarter is located in Shonan Village (Hayama-cho, Miura-gun) in Kanagawa Prefecture, Japan. Each department is housed in its parental institute.

出身者進路状況 Career after graduation

教授 Professors 26

准教授 Associate Professors 28

講師 Lecturers 5

助教 Assistant Professors 26

大学·公的機関等研究職 Research staff in universities, public institutes 85

2020年12月現在 計266名 Total: 266 (updated in December 2020)

特別共同利用研究員

他の大学に所属している修士、博士の学生の方々を「特別共同利用研究員」として受入れ、研究指導 を行っています。全国から毎年20名程度の学生の方々が分子研に滞在し、研究に取り組んでいます。

受入れ大学(過去10年):北海道大学、茨城大学、宇都宮大学、千葉大学、東京大学、東京工業大学、 新潟大学、信州大学、静岡大学、名古屋大学、愛知教育大学、名古屋工業大学、豊橋技術科学大学、 北陸先端科学技術大学院大学、京都大学、大阪大学、神戸大学、岡山大学、広島大学、愛媛大学、 九州大学、名古屋市立大学、早稲田大学 他

広く社会に「科学の芽」を育む

Promoting widespread awareness of science in the society

社会との交流■

カナイチンスークム Molecular Science Forum 豊田理化学研究所との共催で"分子科学 フォーラム"を年4回開催しています。国内 外の著名な研究者を講師にお迎えし、分子 科学をはじめとして様々な分野の研究を わかりやすく紹介して頂いています。

国研セミナー

Knowledge Enhancement Workshop for Science Teachers 岡崎市の科学技術・理科教育振興事業の ー環として、岡崎3研究所と岡崎南ロータ リークラブとの協力事業の一つとして行 われているセミナーです。岡崎市内の小・ 中学校の理科教員を対象として、岡崎3 研究所の研究者が講師となって昭和60年 から始まり、毎年行われています。

見学受入れ

Campus Tour

研究所を多くの方に知って頂くため、見学の受入れを行っています。 体験型展示室をはじめ、最先端の研究施設等を毎年たくさんの方 に見学いただいています。2020年度は新型コロナウイルス感染 症感染拡大防止の観点から、見学の受入れを中止しました。

メディアによる情報発信

Public Relations 最新の研究成果や各種募集をホームページ に掲載しています。また、分子研が発行して いる出版物についても、ホームページより ご覧いただけます。 https://www.ims.ac.jp/

出前授業

Collaboration with Okazaki City Education Board

学校では普段体験できないことを体験 してもらい、科学に対しての夢を持って もらうために、主に岡崎市内の中学校を 対象として、岡崎3研究所の研究者が講義・ 実験を行っています。

スーパーサイエンスハイスクール Super Science Highschool 文部科学省が指定した科学技術、理科・ 数学教育を重点的に行う高等学校(スー パーサイエンスハイスクール)活動を、 自然科学研究機構として支援しています。

一般公開

Open Campus 研究所で行われている活動について、広く一般の方々 に理解を深めていただくため、3年に1回一般公開を 行っています。公開日(2021年度開催予定)は実験室 の公開や講演会など様々なイベントを行います。

■自然科学研究機構 岡崎共通施設 Common Facilities in Okazaki

岡崎情報図書館

Okazaki Library and Information Center http://www.lib.orion.ac.jp/

岡崎情報図書館は、岡崎3研究所の図書、雑誌 等を収集・整理・保存し、機構の職員、共同利用 研究者等が利用できます。

[主な機能] 情報検索サービス Web of Science、 SciFinder 等

In the Okazaki Library and Information Center, books and journals from three affiliated institutes (IMS, NIBB, NIPS) are collected, arranged, and stored for the convenient use of staff and visiting users.

[Available services]

 $\hfill \bigcirc$ Online access to various journals and databases (Web of Science, SciFinder, etc) available.

岡崎コンファレンスセンター Okazaki Conference Center

http://www.orion.ac.jp/occ/

学術の国際的及び国内的交流を図り、機構の研究、 教育の進展に資するとともに、社会との連携、交流 に寄与することを目的とした施設です。大隅

ホール208名、中会 議室112名、小会議室 (2室)各50名の利用 ができます。

The Okazaki Conference Center was founded in February 1997 for the purposes of hosting international and domestic academic exchanges, developments in research and education in the three Okazaki institutes, as well as the promotion of social cooperation.

An auditorium (Ohsumi Conference Hall), a middle room (Conference Room B) and two small rooms (Conference Room C) with seating capacities of 208,120, and 50, respectively, are available.

岡崎共同利用研究者宿泊施設 Accommodation Facilities for Researchers

http://www.orion.ac.jp/lodge/

日本全国及び世界各国の大学や研究機関から 共同利用研究等のために訪れる研究者のため の宿泊施設として共同利用研究者宿泊施設

(三島ロッジ、明大寺 ロッジ)があります。

For visiting researchers from universities and institutes within Japan and all over the world, the dormitory called the Mishima Lodge is available. It takes 10 minutes on foot from the Myodaiji area to the Mishima Lodge. On September 2010, the new dormitory called "Myodaiji lodge" opened at the Myodaiji area. This dormitory is for long stay.

社会との連携 Community Activities

施設 Facilitiy	面積 m ²
①研究棟 Main Office Bldg.	2,790
②実験棟 Main Laboratory Bldg.	8,857
③南実験棟 South Laboratory Bldg.	3,935
④計算科学研究センター棟 Computer Center Bldg.	2,474
⑤共同研究棟A棟 Joint Research Bldg. A	1,527
⑥共同研究棟B棟 Joint Research Bldg. B	1,260
⑦共同研究棟C棟 Joint Research Bldg. C	1,053
⑧共同研究棟D棟 Joint Research Bldg. D	1,063
⑨共同研究棟UVSOR棟 Joint Research Bldg. UVSOR	3,097
⑩事務センター棟 Administration Bureau	2,371
① 図書館 Library	2,002
⑫職員会館 Faculty Club & Coop	1,575
⑬エネルギーセンター Electricity Control Station	1,514
⑭廃棄物貯蔵庫 Waste Strage	60
⑮警備員室 Guard Station	131
⑯ 岡崎コンファレンスセンター Okazaki Conference Center	2,863
⑰ 三島ロッジ Mishima Lodge	4,079
⑱山手 1 号館A Yamate No.1 Bldg. A	4,674
⑲山手1号館B Yamate No.1 Bldg. B	2,303
⑳山手2号館 Yamate No.2 Bldg.	8,703
创山手3号館 Yamate No.3 Bldg.	10,757
②山手4号館 Yamate No.4 Bldg.	3,813
⑳山手5号館 Yamate No.5 Bldg.	664
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	111
囫高圧配電施設 High-Voltage Distribution Facility	540
¹²⁶ 明大寺ロッジ Myodaiji Lodge	1,023
②IBBPセンター棟 NIBB Center of Interuniversity Bio-Backup Project	492

運営

■顧問	
研究所の研究、事業計画その	[研究顧問] [外国人運営顧問]
他の管理運営に関して、所長	中嶋 敦慶應義塾大学理工学部教授 Josef Michl Professor, University of Colorado Boulder Professor, University of Colorado Boulder
の諮問に応じて助言等に当た	Hrvoje Petek 米国ピッツバーグ大学教授 Ching Wan Tang
ります。外国人運営顧問に	[運営顧問] Chair Professor, The Hong Kong University
加えて、国内で運営顧問及び	菊池 昇 株式会社コンポン研究所代表取締役所長 Science and Technology
研究顧問を置いています。	長我部 信行 株式会社日立製作所ライフ事業統括本部企画本部長 兼 ヘルスケアビジネスユニット チーフエグゼクティブ
	瀧川 仁 高エネルギー加速器研究機構物質構造科学研究所協力研究員
	松本 吉泰 公益財団法人豊田理化学研究所常勤フェロー
■運営会議	
研究教育職員の人事、共同	[運営会議委員] ◎…議長 ○…副議長 ◎ 秋山 修志 協奏分子システム研究センター教授
利用·共同研究等研究所の運	秋吉 一成 京都大学大学院工学研究科教授
営に関する重要事項で、所長	鹿野田 一司 東京大学大学院工学系研究科教授 石崎 章仁 理論·計算分子科学研究領域教授
が必要と認めるものについ	袖岡 幹子 理化学研究所袖岡有機合成化学研究室主任研究員 江原 正博 理論 計算分子科学研究領域教授
て所長の諮問に応じます。	谷村 吉隆 京都大学大学院理学研究科教授
	中井 浩巳 早稲田大学理工学術院教授 岡本 裕巳 メゾスコピック計測研究センター教
	忍久保 洋 名古屋大学大学院工学研究科教授 加藤 晃一 生命創成探究センターセンター長
	芳賀 正明 中央大学理工学部名誉教授
	藤井 正明 東京工業大学科学技術創成研究院教授 齊藤 真司 理論·計算分子科学研究領域教授
	福井 賢一 大阪大学大学院基礎工学研究科教授 山本 浩史 協奏分子システム研究センター教授
	○村越 敬 北海道大学理学研究院教授
運営会議に、次の人事選考	[人事選考部会]〇…部会長 [共同研究専門委員会]〇…委員長
部会及び共同研究専門委員	秋吉 一成(京大院教授) 〇 飯野 亮太(分子研教授) 石森 浩一郎(北大院教授) 〇 魚住 泰広(分子研教授)
会を置きます。	鹿野田 一司(東大院教授) 石﨑 章仁(分子研教授) 唯 美津木(名大院教授) 齊藤 真司(分子研教授)
	忍久保 洋(名大院教授) 江原 正博(分子研教授) 大内 幸雄(東工大院教授) 山本 浩史(分子研教授)
	中井 浩巳(早稲田大院教授) 解良 聡(分子研教授) 藤井 正明(東工大院教授) 田中 清尚(分子研准教授)
	福井 賢一(阪大院教授) 横山 利彦(分子研教授) 秋山 修志(分子研教授) 西村 勝之(分子研准教授)
	杉本 敏樹(分子研准教授)
■学会等連絡会議 ——	
所長の要請に基づき学会そ	速水 真也(熊本大院教授) 吉村 一良(京大院教授) 飯野 亮太(分子研教授)
の他の学術団体等分子科	相田 美砂子(広大特任教授) 中村 哲也(東北大教授) 石﨑 章仁(分子研教授)
学コミュニティとの連絡、運	石谷 治(東工大院教授) 岩田 耕一(学習院大教授) 岡本 裕巳(分子研教授)
営会議、研究施設運営委員	辻 康之(京大特任教授) 大島 康裕(東工大院教授) 解良 聡(分子研教授)
会委員候補者等の推薦等に	小松崎 民樹(北大教授) 恩田 健(九大院教授) 小林 玄器(分子研准教授)
関することについて検討し、	関山 明(阪大院教授) 佐藤 啓文(京大院教授)
意見を述べます。	森 健彦(東工大院教授)
■教授会議 ————	

■教授会議

専任・兼任・併任・客員の教授及び准教授で構成し、研究及び運営に関する事項について所長を補佐します。

中期計画

文部科学大臣から提示された平成28年度から平成33年度までの第3期中期目標に対して、自然科学研究機構として第3期中期計画を立てました。中期計画を着実 に行うために毎年、年度計画を立て、年度終了後、実績報告書を文部科学省に提出することになっています。分子科学研究所は研究者個人の自由な発想に基づく 基礎学術研究を中心に据えた研究所です。研究の神髄は計画通りに行かない意外性にあります。そのため、分子科学研究を支えている種々の研究設備も、限定 した目的のためのものではなく、学問の多様性に対応できるものになっています。以下は、このような背景で立案した分子科学の研究分野の中期計画(抜粋)です。

分子科学分野において、物質・材料の基本となる様々な分子及び分子システムの構造、機能、反応に関して、原子・分子及び電子のレベルで研究します。 それによって、化学現象の法則を発見するとともに、一般化して新たな現象や機能を予測、実現します。 (1)理論的・計算化学的方法により、様々な分子システムの構造・性質とその起源を解明するとともに、新たな機能開拓に向けた研究を行います。 (2)高度な光源や先端的分光法の開発を行うとともに、分子システムに内在する高次機能の機構解明や光制御に関する研究を行います。 (3)新規な電気的・磁気的・光学的特性や高効率な物質変換・エネルギー変換を目指して、分子物質や化学反応系の設計・開発を行います。

Administration

NAKAJIMA, Atsushi Hrvoje Petek	Professor, Keio University Professor, University of Pittsburgh
Councillors	
KIKUCHI, Noboru	Representative Directors, Genesis Research Institute, Inc.
OSAKABE, Nobuyuki	General Manager, Strategy Division, Smart Life Business Management Division, Chief Executive of Healthcare Business Unit Hitachi, Ltd.
TAKIGAWA, Masashi	Institute of Materials Structure Science, High Energy Accelerator Research Organization
MATSUMOTO, Yoshiyasu	Fellow, Toyota Physical and Chemical Research Institute
Foreign Councillors —	
Josef Michl	Professor, University of Colorado Boulder
Ching Wan Tang	Chair Professor, The Hong Kong University of Science and Technology
Advisory Committee –	
AKIYOSHI, Kazunari	Professor, Department of Polymer Chemistry, Kyoto University
KANODA, Kazushi	Professor, Department of Applied Physics, The University of Tokyo
SODEOKA, Mikiko	Chief Scientist, Synthetic Organic Chemistry Laboratory, RIKEN
TANIMURA, Yoshitaka	Professor, Department of Chemistry, Kyoto University
NAKAI, Hiromi	Professor, Department of Chemistry & Biochemistry, Waseda University
SHINOKUBO, Hiroshi	Professor, Graduate School of Engineering, Nagoya University
HAGA, Masaaki	Professor Emeritus, Faculty of Science and Engineering, Chuo University
FUJII, Masaaki	Professor, Institute of Innovative Research, Tokyo Institute of Technology
FUKUI, Kenichi	Professor, Graduate School of Engineering Science, Osaka University
MURAKOSHI, Kei	Professor, Graduate School of Science, Hokkaido University
AKIYAMA, Shuji	Professor, Institute for Molecular Science (Chair)
IINO, Ryota	Professor, Institute for Molecular Science
ISHIZAKI, Akihito	Professor, Institute for Molecular Science
EHARA, Masahiro	Professor, Institute for Molecular Science
UOZUMI, Yasuhiro	Professor, Institute for Molecular Science
OKAMOTO, Hiromi	Professor, Institute for Molecular Science
KATO, Koichi	Professor, Exploratory Research Center on Life and Living Systems
KERA, Satoshi	Professor, Institute for Molecular Science
SAITO, Shinji	Professor, Institute for Molecular Science
YAMAMOTO, Hiroshi	Professor, Institute for Molecular Science
YOKOYAMA, Toshihiko	Professor, Institute for Molecular Science

収支決算 Settlement of account

2020年度収支決算

収 入		支 出	
項目	金額(千円)	項目	金額(千円)
運営費交付金	2,171,164	人件費	965,954
施設整備費補助金	269,940	研究経費	607,004
補助金等収入 小計	93,974	共同利用経費	505,535
研究大学強化促進費補助金	36,833	教育研究支援経費	0
科学技術人材育成費補助金	0	一般管理費	3,776
先端研究設備整備費補助金	49,973	施設整備費	269,940
中小企業経営支援等対策費補助金	7,168	補助金等小計	93,974
国立大学財務・経営センター施設費交付金	0	研究大学強化促進費補助金	36,833
自己収入	25,626	科学技術人材育成費補助金	0
産学連携等研究収入及び寄附金収入等小計	749,477	先端研究設備整備費補助金	49,973
産学連携等研究収入	642,247	中小企業経営支援等対策費補助金	7,168
寄附金	49,487	産学連携等研究経費及び寄附金事業費等 小計	722,210
大学院教育経費収入	57,742	産学連携等研究費	633,151
目的積立金取崩額	0	寄附金事業費	31,316
科学研究費助成事業(直接経費)	479,779	大学院教育経費	57,742
		科学研究費助成事業(直接経費)	331,697
収入合計	3,789,962	支出合計	3,500,092

※千円未満の端数切捨てのため、小計·合計の値は各項目の合算値と一致しない場合がある。

2020年度外部資金獲得状況

項目	金額(千円)	
科学研究費助成事業(直接経費)	479,779	
共同研究費	34,337	
受託研究費	563,906	
研究費寄附金	37,224	
合計	1,115,246	

内訳詳細は「分子研リポート2020」を参照。

Settlement of account for FY2020 (unit of 1,000 JPY)

Income		Expenses	
item	amount	item	amount
Subsidies for Operating Expenses	2,171,164	Personnel	965,954
Equipment Development Subsidy	269,940	Research	607,004
Other Subsidies	93,974	Joint Research	505,535
Facility Grants	0	Supports for Education and Research	0
Self-Income	25,626	General Administration	3,776
Industry-Academia Collaboration Research and Donations	749,477	Facilities Expenses	269,940
Industry-Academia Collaboration Research	642,247	Other Subsidies	93,974
Donations	49,487	Industry-Academia Collaboration Research and Donations	722,210
Graduate School Income	57,742	Industry-Academia Collaboration Research	633,151
Reversal of Reserve for Specific Purposes	0	Donations	31,316
Grants-in-Aid Scientific Research "KAKENHI"*	479,779	Graduate School Expenses	57,742
		Grants-in-Aid Scientific Research "KAKENHI"*	331,697
total	3,789,962	total	3,500,092

*Direct Costs only.

Status of External Research funding for FY2020 (unit of 1,000 JPY)

item	amount	
Grants-in-Aid Scientific Research "KAKENHI"**	479,779	
Joint Research funds	34,337	
Research grants	563,906	
Research subsiders, donations, grants, etc.	37,224	
total	1,115,246	

**Direct Costs only.

アクセス Access

■ 東京方面から

豊橋駅下車、名鉄(名古屋鉄道)に乗り換えて、東岡崎駅下車(豊橋一東岡崎 間約20分)、南口より徒歩約7分。

■ 大阪方面から

名古屋駅下車、名鉄に乗り換え、東岡崎駅下車(名鉄名古屋一東岡崎間約 30分)、南口より徒歩約7分。

■ 中部国際空港から

名鉄空港線:中部国際空港駅から名古屋方面に乗り、神宮前で豊橋方面に乗り 換え東岡崎で下車(中部国際空港ー東岡崎間約60分)、南口より徒歩7分。

■ 自動車利用の場合

東名高速道路の岡崎ICを下りて国道1号線を名古屋方面に1.5km、市役所南 東信号を左折。ICから約10分。

From Tokyo

At Toyohashi Station, catch the Meitetsu train and get off at Higashi-Okazaki Station (approx. 20 min from Toyohashi to Higashi-Okazaki).Turn left at the ticket gate and walk south for approx. 7 min.

From Osaka

At Meitetsu Nagoya Station, catch the Meitetsu train and get off at Higashi-Okazaki Station (approx. 30 min from Meitetsu Nagoya to Higashi-Okazaki).Turn left at the ticket gate and walk south for approx. 7 min.

From Central Japan International Airport (Centrair)

Catch the Meitetsu train at Central Japan International Airport Station and get off at Higashi-Okazaki Station (approx. 60 min from the Central Japan International Airport Station to Higashi-Okazaki).Turn left at the ticket gate and walk south for approx. 7 min.

By Car

Take the Okazaki Exit on the Tomei Highway. Approx.1.5 km toward Nagoya, turn left at the City office S.E. turnoff (approx. 10 min from Okazaki Exit).

明大寺地区:〒444-8585 愛知県岡崎市明大寺町字西郷中38番地 山 手 地 区:〒444-8787 愛知県岡崎市明大寺町字東山5-1 TEL.0564-55-7000 FAX.0564-54-2254 https://www.ims.ac.jp/