
Crystal Structure and Magnetic Property of $Co(C_{10}H_{21}N_2)Cl_3$ – a New Cobalt-cyclic Diamine

Bunlawee Yotnoi¹, Sanchai Luachan¹, Timothy Prior² and Apinpus Rujiwatra^{1,*} ¹Inorganic Materials Research Unit, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand.

> ² Department of Chemistry, Faculty of Science, University of Hull, UK *Corresponding author: apinpus@gmail.com

A new hydrogen bonded framework of cobalt complex, $Co(C_{10}H_{21}N_2)Cl_3$, was readily synthesized under solvothermal condition. The crystal crystallizes in monoclinic $P2_1$ with unit cell parameter a = 8.379(2) Å, b = 12.1090(13) Å, c =14.711(4) Å, $\beta = 91.683(4)^\circ$, V = 1492.0(6) Å³ and Z = 4. The crystal structure composes of two different $Co(C_{10}H_{21}N_2)Cl_3$ building motifs, constructed from the tetrahedral cobalt center and chloride and 1-butyl-1-azania-4-azabicyclo[2.2.2]octane as coordinating ligands, the latter of which is formed *in situ*. The two motifs can be differentiated by the Fisher projection of the butyl groups. Weak hydrogen bonds of both inter- and intra- building motifs can be identified, and may account for the thermal stability (up to 360°C). The cobalt centers show roughly paramagnetic coupling with a small asymmetric hysteresis. The maximum molar susceptibility of 18.32×10^{-3} emu.mol⁻¹ at zero applied field can be calculated.

Asymmetric unit of Co(C₁₀H₂₁N₂)Cl₃