Phosphorylcholine-modified biomedical materials

Sheng Meng and Wei Zhong

The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai

200433, China.

e-mail address: shengmeng@fudan.edu.cn; weizhong@fudan.edu.cn; weizhong@fudan.edu; <a href="mailto:weizhong

The syntheses of the "bio-inspired" polymers with phospholipid-like structures have been developed as an important field in improving the biocompatibilities of the biomedical materials [1].In our previous work, different strategies were used to synthesize novel structure of phosphorylcholine-modified biomedical materials, including poly- ε -caprolactone [2, 3], chitosan [4], PEO-PPO-PEO tri-block polymer [5], EVOH micro-porous membranes [6] and gelatin. It was proved that the phosphorylcholine modification could improve the surface anti non-specific protein adsorption properties as well as the blood compatibilities. Furthermore, the interactions among the phosphorylcholine agents [7], were supposed to introduce special properties to the materials, especially in the gel states.

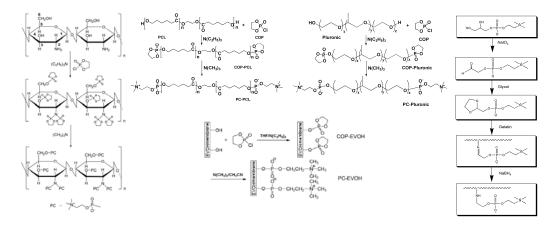


Figure1 Phosphorylcholine modification of different biomedical materials

- [1] Y. Iwasaki and K. Ishihara, Analytical and Bioanalytical Chemistry 381, 534 (2005).
- [2] S. Meng, W. Zhong, L. S. L. Chou, et al., J. Applied Polymer Science 103, 989 (2007).
- [3] M. Lin, S. Meng, W. Zhong, et al., J. Pharmaceutical Sciences 97, 4240 (2008).
- [4] S. Meng, Z. G. Liu, W. Zhong, et al., Carbohydrate Polymers 70, 82 (2007).
- [5] S. Meng, B. J. Sun, Z. Guo, et al., Polymer 49, 2738 (2008).
- [6] J. Zhou, S. Meng, Z. Guo, et al., J. Membrane Science 305, 279 (2007).
- [7] K. Welch, F. Nederberg, T. Bowden, et al., Langmuir 23, 10209 (2007).