Synthesis and Redox Behavior of Dinuclear Ruthenium Complex Bridged by Bis(terpyridyl)xanthene

Yuhei Tsukahara, Tohru Wada and Koji Tanaka

Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan

e-mail address: tyuhei@ims.ac.jp

[Introduction] Dinuclear complex can provide unique reactivity since dinuclear complex have multi-reaction sites and multi-redox sites in one molecule. We have prepared mononuclear (Ru-dioxolene) complex [Ru(OH)(3,6-*t*Bu₂qui)(trpy)](SbF₆) (trpy = 2,2:6'2"- terpyridine) and

the dinuclear complex bridged by bis(terpyridyl)anthracene $[Ru_2(OH)_2(3,6-tBu_2qui)_2]$ $(btpyan)](SbF_6)_2$. Only the dinuclear complex enables catalytic electrochemical four-electron oxidation of water.¹⁾ In this study, we prepared dinuclear ruthenium complex bridged by 4,5-bis(terpyridyl)-2,7-di-tert-buthyl-9,9'-dimethylx $[Ru_2(bpy)_2(btpyxa)Cl_2](PF_6)_2$ anthene (btpyxa) $[1](PF_6)_2$ (bpy = 2,2'-bipyridine) (Figure 1). And redox property of 1 was compared with that of [Ru(bpy)(trpy)Cl](Cl) [2](Cl).

 $[Ru_2(bpy)_2(btpyxa)Cl_2](PF_6)_2$ [1](PF₆)₂.

[Result and Discussion] <u>Synthesis.</u> [Ru₂(btpyxa)Cl₆], prepared as described^[2], was treated with bipyridine in ethanol/water in the present of triethylamine at 80 °C for 3 hours, and then addition of NH₄PF₆ gave [1](PF₆)₂. [1]²⁺ was characterized by ESI-MS (m/z = 685 [1]²⁺) and ¹H NMR spectrum.

<u>Redox Behavior</u>. The cyclic voltammogram (CV) of $[1](PF_6)_2$ in acetonitrile exhibits four re-

versible-like redox waves at $E_{1/2} = -1.68$, -1.77, -2.00, and -2.09 V versus Ag/Ag⁺(Figure 2). According to CV of [2]⁺, redox waves at $E_{1/2} = -1.68$ and -1.77 and $E_{1/2} = -2.00$ and -2.09 V were assigned to bpy/bpy^{•-} and trpy/trpy^{•-}, respectively. Each redox waves of bpy/bpy^{•-} and trpy/trpy^{•-}, was observed for two steps redox waves, which was attribute to electrochemical interaction of the dinuclear [1]²⁺ between two {Ru(bpy)(trpy)Cl} frameworks. CV of [1](PF₆)₂ under CO₂ atmosphere reveals irreversible reduction wave at around -1.6 V, which means a reductive product of [1]²⁺ interacts with CO₂.

- 1) T. Wada, K. Tsuge, K. Tanaka, Angew. Chem. Int. Ed. 2000, 39, 1479.
- 2) T. Wada, K. Tanaka, Eur. J. Inorg. Chem. 2005, 3832.