Physics BI

Answer the following problems on quantum mechanics.

I - a Answer the following problems regarding the orbital angular momentum operators.

(1) The x component of angular momentum l_x is written as $l_x = yp_z - zp_y$. In quantum mechanics, momentum operator \hat{p}_x is represented as

$$\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$$

where $\hbar = h/2\pi$ is the Planck constant. Calculate the commutation relation between orbital angular momentum operator \hat{l}_x and position operators $(\hat{x}, \hat{y}, \hat{z})$, that is $[\hat{l}_x, \hat{x}]$, $[\hat{l}_x, \hat{y}]$, and $[\hat{l}_x, \hat{z}]$. The commutation of operators \hat{A} and \hat{B} is given by $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$.

- (2) Derive the equation of $[\hat{l}_x, \hat{l}_y] = i\hbar \hat{l}_z$.
- (3) For arbitrary operators \hat{A} and \hat{B} , the equation

$$[\hat{A}^2, \hat{B}] = \hat{A}[\hat{A}, \hat{B}] + [\hat{A}, \hat{B}]\hat{A}$$

holds. Prove the square of orbital angular momentum operator \hat{l}^2 and the z component of orbital angular momentum operator \hat{l}_z commute to each other.

I — b We consider the system of a quantum particle with mass m locating in a box potential of V=0 in the region of $0 \le x \le L$ and $V=\infty$ in the region of x < 0, L < x. The wavefunction and its eigenvalue of this system are given by

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right), E_n = \frac{n^2\pi^2\hbar^2}{2mL^2} (n=1, 2, ...)$$
 (1)

in the region of $0 \le x \le L$.

Answer the following problems.

- (1) Write down the Schrödinger equation of this system.
- (2) Write down the boundary conditions for the wavefunction.
- (3) Derive the solutions of equation (1) by assuming the wavefunction of this system as

$$\psi(x) = A\sin(kx) + B\cos(kx)$$

and applying the boundary conditions for the wavefunction.

Physics B II

Answer the following problems on statistical mechanics.

Ising spin in magnetic field has two energy values $-\varepsilon$ or ε .

(1) When the energy of state i is given by E_i , partition function Z in the canonical ensemble at temperature T is given by

$$Z = \sum_{\text{all states } i} e^{-\frac{E_i}{kT}},$$

where k is the Boltzmann constant. Calculate partition function Z of one Ising spin.

(2) In the following problems, we consider a system of N independent Ising spins. Calculate partition function Z of this system in the canonical ensemble at temperature T.

(3) Calculate free energy F using $F = -kT \log Z$.

(4) Calculate entropy S using $S = -\frac{\partial F}{\partial T}$.

(5) Calculate internal energy U using U = F + ST.

(6) Calculate heat capacity C using $C = \frac{\partial U}{\partial T}$ and plot C as a function of T.