Inorganic Chemistry I

- I a Answer the following questions.
- (1) Write down the ground state electronic configuration for each atom or ion listed below $[(i) \sim (iii)]$ according to the example.

[Example] $C (1s)^2 (2s)^2 (2p)^2$

- (i) Be
- (ii) S^{2-}
- (iii) Fe
- (2) Which element has the highest first ionization energy in each list [(i) and (ii)]? Also, which element has the lowest first ionization energy in each list [(i) and (ii)]?
 - (i) H, He, Si, Ar, K
 - (ii) Li, C, N, O, Na
- (3) Consider the structures of the following molecules and ion, (i) \sim (v), based on the valence-shell electron pair repulsion (VSEPR) model, and draw the structures with showing spatial arrangement of each atom clearly. In case that the central atom has lone-pair electrons, show the direction of each lone pair in the structures.
 - (i) PF₅
 - (ii) BrF₅
 - (iii) ClO₄
 - (iv) BCl₃
 - (v) ClF₃
- (4) CO_2 is considered to be isoelectronic with $[N_3]^-$. Give two other species that are also isoelectronic with CO_2 .
- (5) There are three common definitions used to describe acids and bases, Arrhenius, Brønsted-Lowry, and Lewis acids and bases. Give an explanation of each definition to show the differences among them briefly.

- I b Answer the following questions regarding B_2 and O_2 molecules.
- (1) Draw the molecular orbital energy level diagram for O_2 , and add electrons in the diagram. Use " \uparrow " and " \downarrow " to represent electrons in the diagram.
- (2) The ground state of B_2 is triplet. Draw the molecular orbital energy level diagram for B_2 , and add electrons in the diagram. Use " \uparrow " and " \downarrow " to represent electrons in the diagram.
- (3) Which molecule has a shorter distance between two atoms, B_2 or O_2 ? Also, explain the reason briefly.

Inorganic Chemistry $\ \Pi$

II — a Answer the questions for the following complexes $[(i) \sim (v)]$. Each metal complex is a monomer. Here, Ph = phenyl, 'Bu = tert-butyl.

- (i) [CoCl₂(NH₃)₄]Cl
- (ii) $PtCl_2(PPh_3)(\eta^2-C_2H_2)$
- (iii) IrH(CO)₂(PPh₃)₂
- (iv)

(v)

P^tBu₂

Pd O

- (1) Answer the oxidation state of the metal center and the number of d-electrons for each complex.
- (2) Answer the number of valence electrons by using the electron counting methods which are used in the 18-electron rule. Show the method you used for the valence electron count for each complex.

 Π – b Answer the following questions.

- (1) Draw all of the possible stereoisomers for the following complexes [(i) \sim (iii)]. The rotational isomers are not considered. Each metal complex is a monomer.
 - (i) $PtBr_2(PPh_3)_2$
 - (ii) $[CrF_2(NH_3)_4]^+$
 - (iii) Co(CN)₃(NH₃)₃
- (2) Determine the point group for the following complexes $[(i) \sim (iii)]$. Each metal complex is a monomer.
 - (i) $Cr(CO)_6$
 - (ii) Fe(CO)₅
 - (iii) $[Ni(CN)_4]^{2-}$

II - c Answer the following questions.

- (1) Draw the *d*-orbital energy level diagram for the following complexes [(i) ~ (iii)], and label each *d*-orbital (d_{xy} , d_{yz} , d_{zx} , d_{z}^2 , d_{x}^2 - y^2). Be sure to add electrons in the diagram. Use " \uparrow " and " \downarrow " to represent electrons in the diagram. ($\sqrt{2} = 1.41$, $\sqrt{3} = 1.73$, $\sqrt{5} = 2.24$, $\sqrt{7} = 2.65$)
 - (i) [Co(NH₃)₆]³⁺ (octahedral, diamagnetic)
 - (ii) [PtCl₄]²⁻ (square planar)
 - (iii) $[Fe(OH_2)_6]^{3+}$ (octahedral, the magnetic moment is $5.9\mu_B$)
- (2) Calculate the ligand-field stabilization energy (LFSE) in terms of Δ_0 (ligand-field splitting parameter) for the following octahedral complexes [(i) ~ (iii)]. The pairing energy is not considered.
 - (i) d⁹ complex
 - (ii) low-spin d⁶ complex
 - (iii) high-spin d⁵ complex

II - d A catalytic cycle for the formation of acetic acid with a rhodium-based catalyst (Monsanto process) is shown below.

- (1) Fill in the blanks with the general names of the reaction processes [(a) and (b), (boxes adjacent to the arrows)] and the structures of the intermediates [(A) and (E)].
- (2) Give the oxidation state of the metal center and the number of d-electrons for the intermediates [(B), (C) and (D)].