Physics B I

Solve the following problems.

The Hamiltonian of a harmonic oscillator of mass m and spring constant $m\omega^2$ is

$$\hat{H} = \frac{1}{2m} \,\hat{p}^2 + \frac{m\omega^2}{2} \,\hat{x}^2 \,, \tag{1}$$

where \hat{x} and \hat{p} are the operators for coordinate and momentum, respectively. The momentum operator is expressed as $\hat{p} = -i\hbar \frac{d}{dx}$ in terms of coordinate x. Here, \hbar is given by $\hbar = h/(2\pi)$ in terms of the Planck's constant h. By using \hat{x} and \hat{p} , a new set of operators can be defined as

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \, \hat{p} \right),\tag{II}$$

$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \, \hat{p} \right) \, . \tag{III}$$

- (1) Evaluate the commutator relation $[\hat{a}, \hat{a}^{\dagger}]$ between \hat{a} and \hat{a}^{\dagger} by using the commutator relation between \hat{x} and \hat{p} , $[\hat{x}, \hat{p}] = i\hbar$.
 - (2) Show the Hamiltonian in equation (I) is expressed as $\hat{H} = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right)$.
 - (3) Let $\hat{a}^{\dagger}\hat{a}$ be defined as \hat{N} . In addition, let the normalized eigenfunctions and eigenvalues of \hat{N} be ϕ_n and n, respectively, so that

$$\hat{N}\,\phi_n = n\,\phi_n\,. \tag{IV}$$

Show the following relation,

$$\hat{N}\,\hat{a}\,\phi_n = (n-1)\,\hat{a}\,\phi_n \ . \tag{V}$$

(4) Equation (V) shows that $\hat{a} \phi_n$ is an eigenfunction of \hat{N} . The existence of the solutions to the Schrödinger equation of a harmonic oscillator requires that n must be an integer of 0 or more. For n=0, we have

$$\hat{a}\,\phi_0 = 0\,. \tag{VI}$$

Show that ϕ_0 satisfying equation (VI) is a Gaussian function with respect to x.

(5) The following equations for $~\hat{a}~\phi_{_n}~$ and $~\hat{a}^\dagger\phi_{_n}~$ can be derived as

$$\hat{a}\,\phi_n = \sqrt{n}\,\phi_{n-1}\,,\tag{VII}$$

$$\hat{a}^{\dagger}\phi_{n} = \sqrt{n+1} \,\phi_{n+1} \ . \tag{VIII)}$$

Evaluate the following equations (IX) and (X), by using the orthonormal condition for ϕ_n ,

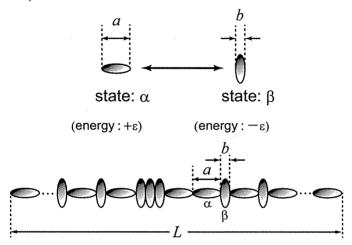
$$\langle x \rangle_n = \int_{-\infty}^{+\infty} \phi_n^*(x) \,\hat{x} \,\phi_n(x) dx,$$
 (IX)

$$\langle x^2 \rangle_n = \int_{-\infty}^{+\infty} \phi_n^*(x) \, \hat{x}^2 \, \phi_n(x) dx \,. \tag{X}$$

Physics B II

Solve the following problems.

As shown in the figure below, consider a one-dimensional chain consisting of N molecules which exist in two states (α and β), with corresponding energies $+\epsilon$, $-\epsilon$, and lengths a, b, respectively. There is no intermolecular interaction. Each molecule thus takes one of two states independently of surrounding molecular states. The molecular chain reaches a thermal equilibrium state (microcanonical ensemble). Note that k_B is the Boltzmann constant.



- (1) Consider a state consisting of N_{α} molecules in α and N_{β} molecules in β , where $N = N_{\alpha} + N_{\beta}$. Then, evaluate the length L and the energy E_L of the molecular chain.
- (2) Evaluate the thermodynamic weight $W(N_{\alpha}, N_{\beta})$ in the state.
- (3) Prove that the entropy S of the molecular chain is

$$S = -k_{\rm B} \left\{ N_{\alpha} \log \frac{N_{\alpha}}{N} + N_{\beta} \log \frac{N_{\beta}}{N} \right\},\,$$

by using Stirling formula: $\log n! = n \log n - n \ (n \gg 1)$.

Consider the canonical distribution of the molecular chain contacting with the heat bath of constant temperature T. Generally, in the state of γ with corresponding the energy E_{γ} , the partition function Z of the canonical ensemble is described by the equation

$$Z = \sum_{\gamma} \exp\left(-\frac{E_{\gamma}}{k_{\rm B}T}\right).$$

- (4) Evaluate the partition function Z_1 of one molecule and the partition function Z_N of the chain of N molecules.
- (5) Using the result of Z_N , evaluate the Helmholtz free energy $F = -k_B T \log Z_N$, the entropy $S = -\partial F/\partial T$, and the internal energy U = F + ST.
- (6) Evaluate the specific heat $C = \partial U / \partial T$, and draw the figure of C as a function of T. Note that the vertical and horizontal axes are expressed by C/Nk_B and k_BT/ε , respectively.