量子力学に関する以下の問題に答えなさい。

二つの障壁に閉じ込められた質量 \(m \) の一次元上を運動する粒子について考える。ポテンシャル \(V(x) \) は次のようになっている。

\[
V(x) = \begin{cases}
0 & (0 \leq x \leq L) \\
\infty & (x < 0, x > L)
\end{cases}
\] \hspace{1cm} (1)

プランク定数を \(h \) として、\(\hbar = h/2\pi \) とする。

（1）この粒子の \(0 \leq x \leq L \) における時間に依存しないシュレーディンガー方程式を書きなさい。エネルギーは \(E \) とする。

（2）この粒子の基底状態と第一励起状態の固有関数 \(\phi_0(x), \phi_1(x) \) とそれぞれの固有エネルギー \(E_0, E_1 \) を求めなさい。固有関数は実関数として、それぞれ規格化すること。

（3）この粒子の基底状態と第一励起状態における位置 \(x \) の期待値をそれぞれ求めなさい。

（4）固有関数 \(\phi_n(x) \) の時間発展 \(\psi_n(x, t) \) は \(\phi_n(x) \exp(-iE_n t/\hbar) \) と記述される。この粒子の波動関数を \(\Psi(x, t) \) として、その初期状態 \(\Psi(x, 0) \) が \(1/\sqrt{2} \phi_0(x) + 1/\sqrt{2} \phi_1(x) \) となっている場合、位置 \(x \) の期待値の時間依存性を求め、その振動周期を求めなさい。
統計熱力学に関する以下の問題に答えない。

スピン $\frac{1}{2}$ の粒子が磁場 $H (H > 0)$ の中に固定されているとする。スピンは磁場に対して同じ方向または逆の方向の 2 状態を取り、スピンが磁場と同じ方向を向いているとき又は逆の方向を向いているときのエネルギーはそれぞれ $E_0 = 0, E_+ = 2\mu_0 H$ で与えられる。ここに、μ_0 はスピン磁気モーメントを表し、正の値を持つ。

いま、このような粒子 N 個から成る系が一様磁場 $H (H > 0)$ の中に置かれ、温度 T の熱平衡状態にあるとする。粒子間に相互作用が無い場合を考えると、全系のエネルギーは各粒子のエネルギーの和を考えればよいので、カノニカルアンサンブルの分配関数 Z は次のように表すことができる:

$$Z = \prod_{n=1}^{N} \sum_{\sigma = \pm, -} \exp \left(-\frac{E^{(n)}_{\sigma}}{k_B T} \right).$$

ここで、k_B はボルツマン定数である。

（1）分配関数 Z を $N, \varepsilon = 2\mu_0 H, \beta = (k_B T)^{-1}$ を用いて表しなさい。

（2）内部エネルギー U を $N, \varepsilon = 2\mu_0 H, \beta = (k_B T)^{-1}$ を用いて表しなさい。

（3）定積熱容量 C_V が $C_V = -\frac{1}{k_B T^2} \left(\frac{\partial U}{\partial \beta} \right)_{V,N}$ と表されることを証明しなさい。

（4）定積熱容量 C_V を $N, \varepsilon = 2\mu_0 H, k_B, T$ を用いて表しなさい。

（5）低温極限および高温極限において定積熱容量 C_V が温度変化に対してどのように振る舞うのかを、その物理的意味とともに説明しなさい。

（6）温度 T の関数として定積熱容量 C_V の概形を描きなさい。