Physical Chemistry I

I - a

Fill in the blanks ① to ⑧ with words or formulae.

We consider π orbitals of a 2-propenyl cation, $CH_2CHCH_2^+$, using the Hückel approximation. Three carbon atoms in the molecule are labelled as D, E, and F from left to right, and their 2p atomic orbitals are defined as φ_D , φ_E , and φ_F , respectively. The π orbitals are, then, written by the linear combination of the atomic orbitals as

$$\psi = c_{\rm D}\varphi_{\rm D} + c_{\rm E}\varphi_{\rm E} + c_{\rm F}\varphi_{\rm F}.$$

Here, we define

$$\int \varphi_i^* \varphi_j d\tau = S_{ij},$$

$$\int \varphi_i^* H \varphi_j d\tau = \begin{cases} \alpha_i & (i = j) \\ \beta_{ij} & (i \neq j) \end{cases},$$

where i and j denote D or E or F, $d\tau$ is the volume element, H is the hamiltonian, and S, α_i , and β_{ij} are called as $\boxed{\bigcirc}$ integral, $\boxed{\bigcirc}$ integral, and $\boxed{\bigcirc}$ integral, respectively.

In the Hückel approximation, it is assumed that S is given as

$$S_{ij} = \left\{ \begin{array}{ll} 1 & (i=j) \\ 0 & (i \neq j) \end{array} \right.,$$

 α_i is given as α independent of i, and β_{ij} becomes a non-zero value β when i and j are neighboring atoms; thus, β_{DF} is 0.

The total energy of the system ε and the orbital ψ can be obtained from the following three equations based on the $\boxed{\textcircled{4}}$ principle:

$$\frac{\partial \varepsilon}{\partial c_{\rm D}} = 0, \quad \frac{\partial \varepsilon}{\partial c_{\rm E}} = 0, \quad \boxed{\text{(5)}}$$

To determine the orbital ψ , the 6 condition written as

$$\int \psi^* \psi \mathrm{d}\tau = 1 \,,$$

is also imposed, where $\psi^*\psi$ is the $\boxed{\mathfrak{D}}$ density. When electrons occupy the orbitals, the $\boxed{\mathfrak{B}}$ exclusion principle should be satisfied.

I - b

- (1) Explain what is the 4 principle.
- (2) Explain the meaning of $\psi^*\psi d\tau$, which is given by multiplying $d\tau$ by the \bigcirc density.
- (3) Explain what is the 8 exclusion principle.

I - c

- (1) On the basis of the description of I-a, write down the 3×3 secular determinant for the π orbitals of the 2-propenyl cation using ε , α , and β .
- (2) Find three eigen-energies from the secular determinant obtained in (1).
- (3) From three π orbitals corresponding to the eigen-energies obtained in (2), find and write down the orbital ψ with the lowest eigen-energy using φ_D , φ_E , and φ_F .
- (4) Draw a rough sketch of the π orbital obtained in (3).

I - d

The 2-propenyl cation is relatively stable comparing to other primary carbocations. Explain the reason of the stability on the basis of the result obtained in $\rm~I-c$.

Physical Chemistry II

We consider the reversed Carnot cycle that is a model of refrigerator. As shown in the figure, the state (P_1, V_1) at a low temperature $(T_L [K])$ receives the heat $Q_L [J]$, and becomes the state (P_2, V_2) by the isothermal expansion in process ①. In process ②, the state (P_3, V_3) at a high temperature $(T_H [K])$ is formed due to the adiabatic compression by receiving the work $W_C [J]$ from a compressor. The state (P_4, V_4) is formed due to the isothermal compression at a high temperature $(T_H [I])$

[K]) in process ③, and emits the heat Q_H [J]. Finally, the refrigerant recovers the state (P_1, V_1) at the low temperature $(T_L [K])$ by the adiabatic expansion with a reducing valve in process ④. Gas constant R is 8.31 [J K⁻¹ mol⁻¹]. Absolute temperature is connected to Celsius temperature as $T[K] = T_0$ [°C] + 273 [K]. The refrigerant is an ideal gas whose amount is 1 [mol], and the equation of state becomes PV = RT. The energy change dU in the system is given by the sum of the heat dq and the work dw as dU = dq + dw. The change of the work is given by dw = -pdV. Answer the questions below. Use the significant figure of three.

I - a

Calculate the emitted heat Q_L [J] necessary for cooling the 10 g water from 25 °C to 10 °C. The heat capacity of water is 4.22 [J g⁻¹ K⁻¹].

I - b

Derive a formula of pressure ratio P_2/P_1 for receiving the heat Q_L [J] in process ①. For the isothermal expansion, dU = 0.

I-c

In adiabatic compression process ②, the temperature is increased from $T_L = 10$ °C to $T_H = 50$ °C by receiving the work W_C [J]. The Poisson law described below holds in the adiabatic compression.

$$PV^{\gamma} = \text{const}$$

- (1) Derive a formula for dV/dT in adiabatic compression process ②.
- (2) Calculate the work W_C [J] by using the formula dV/dT obtained in question (1). $\gamma = 5/3$ for an ideal gas.

I - d

Calculate the heat $Q_{\rm H}$ [J] emitted in isothermal compression process ③. Use the heat $Q_{\rm L}$ [J] in isothermal expansion process ① obtained in question I — a. $V_4/V_3 = V_1/V_2$ holds in the reversed Carnot cycle of an ideal gas.