Physics A I

I Answer the following questions on classical mechanics.

Consider one dimensional vibrational motion of a point mass with mass m that is connected to the wall by a spring with spring constant k. As shown in Fig. 1, the position of the point mass from the natural length at time t is denoted by x(t). Ignore the mass of the spring, gravity, and frictional force from the flat floor. Use the following notations for time derivatives of the position: $\dot{x} = dx/dt$, $\ddot{x} = d^2x/dt^2$.

Figure 1

- (1) Derive the equation of motion of the point mass under the force only from the spring.
- (2) Solve the equation of motion in the question (1) under the following initial condition at time 0, $x = x_0$ and $\dot{x} = 0$, and answer the period of the vibrational motion. Then, calculate the kinetic, potential, and total energies of the vibrational motion at time t.
- (3) Consider the vibrational motion of the point mass under the force from the spring and a resistive force proportional to the velocity $-\eta \dot{x}$, where η is a positive constant. Then, write the equation of motion of this vibrational motion, and verify that the equation of motion is described as $\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$. Express ω_0 and γ using m, k and η . Note that ω_0 and γ are positive and called as natural frequency and damping rate, respectively.

In the following questions, consider the situation where a time dependent external force $F(t, \omega) = F_0 exp(-i\omega t)$ is applied along the x axis to the point mass in the question (3).

- (4) Derive the equation of motion of this vibrational motion. Then, solve the equation of motion and express the complex amplitude $A(\omega)$ with ω_0 and γ , assuming that the solution of this equation is expressed as the following form: $x(t,\omega) = A(\omega)exp(-i\omega t)$.
- (5) When the frequency ω is around ω_0 ($\omega \approx \omega_0$), the following approximation is valid: $\omega_0^2 \omega^2 = (\omega_0 + \omega)(\omega_0 \omega) \approx 2\omega_0(\omega_0 \omega)$. By using this approximation, verify that the complex amplitude $A(\omega)$ derived in the question (4) is expressed as $A(\omega) = \frac{F_0}{2m\omega_0} \frac{1}{\omega_0 \omega i\gamma}$. This complex amplitude is also expressed as the form $A(\omega) = |A(\omega)| exp(i\theta(\omega))$. Then, answer the absolute value $|A(\omega)|$ and verify that the phase $\theta(\omega)$ satisfies the following relation: $\tan\theta(\omega) = \frac{\gamma}{\omega_0 \omega}$. Finally, verify that phase of the vibrational motion of the point mass $x(t,\omega)$ is deviated by $\theta(\omega)$ from the externally applied force $F(t,\omega)$.
- (6) Choose the most appropriate sketch of $|A(\omega)|$ and $\theta(\omega)$ from the Figures 2(a)-(h) for both of the cases with the resistive force $(\eta > 0)$ and without the resistive force $(\eta = 0)$.

Figure 2

Physics A II

II Answer the following questions on electromagnetism.

Use the MKSA units and consider a particle with electric charge q and mass m moving in the electromagnetic field. Here, the charged particle moves in a vacuum under no gravity.

- (1) When a charged particle moves in the electromagnetic field, the force F acting on the charged particle is given by $F = qE + q\frac{d\mathbf{r}}{dt} \times \mathbf{B}$ where the position vector $\mathbf{r} = (x,y,z)$. Here, E is the electric field, \mathbf{B} is the magnetic flux density, and t is time. Derive the x, y, and z components of the equations of motion for the charged particle under the uniform electric field $\mathbf{E} = (E_x, E_y, E_z)$ and magnetic flux density $\mathbf{B} = (B_x, B_y, B_z)$.
- (2) When $E_x = E_y = E_z = 0$, $B_x = B_y = 0$, and $B_z = B_0$, solve the equations of motion obtained in question (1) for x, y, and z components. Here, initial conditions at t = 0 are $\mathbf{r} = (0,0,0)$ and $\frac{d\mathbf{r}}{dt} = (v_0,0,0)$ where $v_0 > 0$. If necessary, you can use that the general solution of the differential equation $\frac{d^2f}{dt^2} = -\omega^2 f$ is given as $f(t) = C_1 \sin \omega t + C_2 \cos \omega t$. Here, C_1 and C_2 are constants and ω is a real number.
- (3) Using the solution obtained in question (2), prove that the trajectory of the charged particle is a closed circle and also calculate its radius and coordinate of the center.

(4) It is assumed that the charged particle is ejected at time t=0 from a position r=(0,0,0) with a velocity $\frac{d\mathbf{r}}{dt}=\left(v_0,0,0\right)$ where $v_0>0$. The electric field $E_y=E_0$, $E_x=E_z=0$ and magnetic field $B_x=B_y=B_z=0$ are applied until $t=t_0$. After $t=t_0$, these fields are not applied $(E_x=E_y=E_z=0)$ and $B_x=B_y=B_z=0$. Answer positions of y and z when the particle reaches the yz-plane at $x=x_0$. Note that x_0 is a positive real number.