2nd, 2024

Physics BI

[2 pages in total]

Answer the following questions on quantum mechanics. Let *i* be the imaginary unit and \hbar be the Planck constant *h* divided by 2π . For a Hamiltonian \hat{H} the state vector $|\psi(t)\rangle$ evolves in time according to $i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$.

A particle of spin 1/2 is in a time-independent uniform magnetic field of strength B_0 applied in the positive direction of the z-axis. In this case, the Hamiltonian due to the interaction between the magnetic moment originating from the spin and the magnetic field can be expressed as

$$\hat{H} = -\omega_0 \hat{S}_z,$$

where $\omega_0 > 0$ is proportional to B_0 . When the up- and down-spin states along the z-axis are written as $|\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, |\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$, the spin angular momentum operator is represented with the Pauli matrices as $\hat{S}_i = \frac{\hbar}{2}\sigma_i$ (i = x, y, z), where

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (1) Find the energy eigenvalues of the Hamiltonian \hat{H} .
- (2) Using |↑⟩ and |↓⟩, express the eigenstate |S_x; +⟩ belonging to the eigenvalue +ħ/2 of the spin angular momentum operator in the x-axis direction Ŝ_x.

When the directions of the spin and the magnetic field are not parallel, the direction of the spin undergoes a precession. Suppose that the spin angular momentum is $S_x = +\hbar/2$ at time t = 0.

- (3) Using $|\uparrow\rangle$ and $|\downarrow\rangle$, express the state vector of the spin $|\psi(t)\rangle$ at time $t \ge 0$.
- (4) By considering ⟨S_x; +|ψ(t)⟩, find the probability of observeing a state with spin angular momentum of S_x = +ħ/2 at time t ≥ 0.
- (5) Find the expectation value of the spin angular momentum in the x-axis direction $\langle \hat{S}_x \rangle$ as a function of time t.

When an oscillating magnetic field sufficiently weak compared to B_0 , $B_1 \cos \omega t$, is applied in the x-axis, the Hamiltonian can be expressed in the form,

$$\hat{H} = -\omega_0 \hat{S}_z - 4\lambda \cos(\omega t) \hat{S}_x, \quad |\lambda| \ll \omega_0.$$

Suppose the spin angular momentum at time t = 0 is $S_z = -\hbar/2$.

- (6) The spin state at time t ≥ 0 is written as |ψ(t)⟩ = C_↑(t)e^{+iω₀t/2}|↑⟩ + C_↓(t)e^{-iω₀t/2}|↓⟩. Find the differential equations satisfied by C_↑(t) and C_↓(t). For simplicity of computation, you may neglect the term including the high frequency components, e^{±i(ω+ω₀)t}.
- (7) Expand the coefficients in Question (6) as $C_{\uparrow\downarrow}(t) = C^{(0)}_{\uparrow\downarrow}(t) + \lambda C^{(1)}_{\uparrow\downarrow}(t) + \cdots$ with respect to λ . By comparing the powers of λ appearing on both sides of the differential equations, find the differential equation satisfied by $C^{(0)}_{\uparrow}(t)$ and $C^{(1)}_{\uparrow\uparrow}(t)$.
- (8) By using the first-order perturbative approximation, find the probability of observing a state with spin angular momentum S_z = +ħ/2 at time t ≥ 0.

(END)

Physics B II

[1 page in total]

?

Answer the following questions on statistical mechanics. Let $k_{\rm B}$ be the Boltzmann constant, $\beta = 1/(k_{\rm B}T)$ be the inverse temperature with respect to temperature T, and \hbar be the Planck constant h divided by 2π .

Consider the model proposed by Einstein to explain that the specific heat of a solid is zero at temperature T = 0. In this model, the lattice vibrations in a crystal consisting of N atoms are considered as a set of 3N independent one-dimensional harmonic oscillators with angular frequency, ω .

Suppose this system is in thermal equilibrium at temperature T. Because the energy eigenvalues of a harmonic oscillator are expressed as $\varepsilon_n = \hbar \omega (n + 1/2)$ with n = 0, 1, 2, ..., the partition function of the whole system can be expressed as $Z = z^{3N}$ with $z = \sum_{n=0}^{\infty} e^{-\beta \varepsilon_n}$.

- (1) Show that the mean energy of the system in thermal equilibrium is expressed as $\langle E \rangle = -\frac{\partial}{\partial\beta} \log Z$.
- (2) Find the mean energy of the system, $\langle E \rangle$.
- (3) Find the heat capacity at constant volume, $C_{\rm V}$.
- (4) In the high-temperature limit of $k_{\rm B}T \gg \hbar\omega$, show that the result of Question (3) is the heat capacity obtained using classical mechanics. Also explain its physical meaning.
- (5) In the low-temperature limit of $k_{\rm B}T \ll \hbar\omega$, show that the result of Question (3) approaches zero as the temperature decreases. Also explain the physical reasons for the difference from the results obtained using classical mechanics.
- (6) This Einstein model cannot explain the experimental result that the specific heat in the low-temperature limit is proportional to the cube of the temperature T. Suggest how the model can be improved.

(END)