分子科学研究所 夏の体験入学

有機半導体 セキシチオフェンの合成

分子スケールナノサイエンスセンター

鈴木グループ

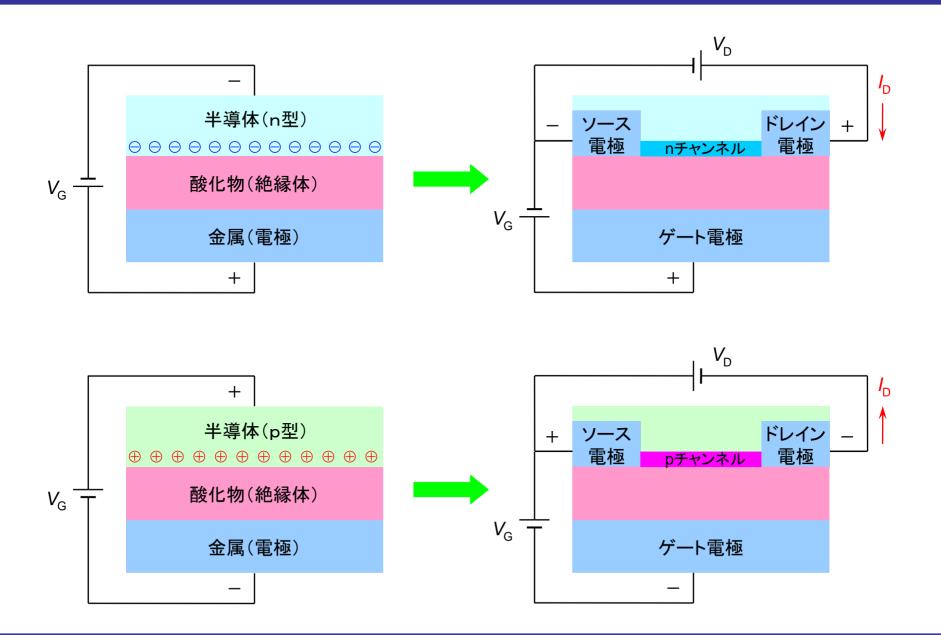
有機半導体とは?

有機物は一般的に絶縁体であるが、薄膜あるいは単結晶にキャリアを注入し、高電圧をかけると電気が流れるものがある。キャリアがホール(ラジカルカチオン)のものをp型半導体、電子(ラジカルアニオン)のものをn型半導体と呼ぶ。

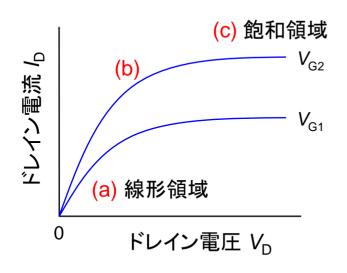
有機半導体の注目されている用途とは?

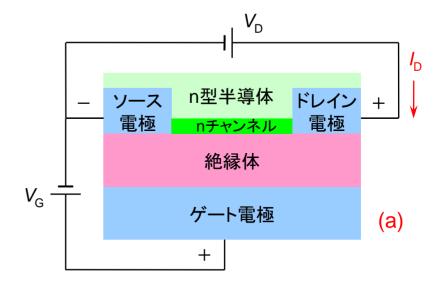
有機EL素子および有機トランジスタ。両者を組み合わせれば、紙のように薄くフレキシブルなディスプレーが可能。

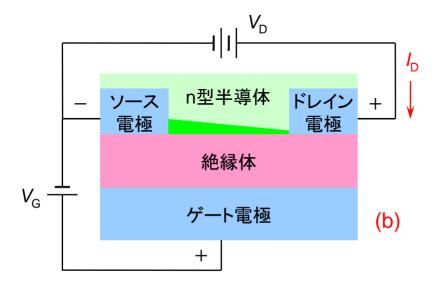
トランジスタとは?

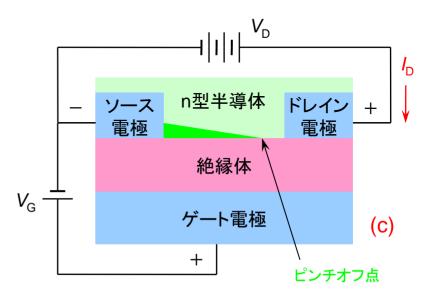

- 1) 微弱な電気信号を増幅
- 2)スイッチング機能

種類	キャリア	構造	用途
pn接合トランジスタ Bipolar Transistor	電子と ホール	エミッタ、ベース、コレクタの 3領域からなるnpn構造とpnp 構造	高周波増幅、超 高速演算、およ び信号処理
電界効果トランジスタ Field-Effect Transistor	電子またはホール	MOS構造(ゲート電極、酸化 物絶縁体、半導体)にソースお よびドレイン電極、n型とp型	IC

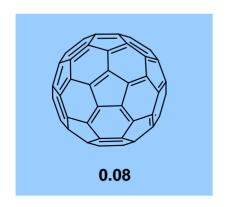

シリコンベースのFET


FETの種類	半導体の作成法	電子移動度 (cm ² /V s)	用途
単結晶シリコン MOSFET	多結晶シリコンの溶融・ 徐冷による単結晶の育成、 ウエハの切出し	500	LSI
アモルファスシリコン TFT	シランガスと水素ガスの プラズマCVDによりガ ラス基板上に作成	0.2–1.0	液晶画素のスイッチ ング素子
多結晶シリコン TFT	アモルファスシリコンの レーザーアニールによる 結晶化	100–200	液晶画素のスイッチ ング素子および周辺 駆動回路


FETの構造と動作原理



FETの電流一電圧特性



有機p型半導体の例

オリゴチオフェン

アセン O.01 R-(S)-R O.09 (R = H) O.15 (R = C₆H₁₃)

有機n型半導体の例

$$C_6F_{13}$$
 S S S C_6F_{13} $O.02$

$$C_7F_{15}$$
 C_8H_{17}
 C_8H_{17}
 C_8H_{17}
 C_8H_{17}

SiO₂/Si基板上での電子移動度(cm²/V s)