CONTENTS

IMS 1999KAYA, Ko	oji iii
CONTENTS	v
ORGANIZATION AND STAFF	1
COUNCIL	13
BUILDINGS AND CAMPUS	
RESEARCH ACTIVITIES I	17
Department of Theoretical Studies I-A Development of New Theoretical and Numerical Techniques in the Study of Molecular Str	ucture
I-A-1 Multireference Linear Response Theory	
Utilizing the State Universal Coupled Cluster Formalism	17
I-A-2 Size-extensive Calculations of Static Structure Factors	17
from the Coupled Cluster Singles and Doubles Model	17
I-A-4 On Connection Between The Reference Interaction Site Model Integral Equation Theorem	
and The Partial Wave Expansion of The Molecular Ornstein-Zernike Equation	 17
I-A-5 Non-Adiabatic Relaxation Through a Conical Intersection	17
I-B Water Clusters and Their Complexes with Atomic Ions	
I-B-1 Theoretical Studies of Structures and Ionization Threshold Energies	
of Water Cluster Complexes with a Group 1 Metal, $M(H_2O)_n$ (M = Li and Na)	18
I-B-2 The Electron-Hydrogen Bonds and the Harmonic Frequency Shifts in Water Cluster Complexes with a Group 1 Metal Atom, $M(H_2O)_n$ (M = Li and Na)	10
I-B-3 The Energies, the Structures and the Harmonic Frequencies	10
of the Small Water Cluster Anions, $(H_2O)_n^-$ ($n = 3, 4$ and 6)	18
I-B-4 Theoretical Study of Vibrational Spectra for Cl ⁻ (H ₂ O):	
Temperature Dependence and the Influence of Ar_n $(n = 1-3)$	19
I-C Computational Chemistry of Atomic and Molecular Processes in Atmospheric Environment	at
I-C-1 Accurate Potential Energy and Transition Dipole Moment Curves of Several Electronic States of CO ⁺	
of Several Electronic States of CO ⁺	19
I-C-2 Accurate Potential Energy Curves of Several Electronic States of N ₂ ⁺ and O ₂ ⁺	19
I-C-3 Absorption and Emission Spectra Among the Rovibrational Levels of the Electronic Ground State of CO $X^1\Sigma^+$	20
I-C-4 Theoretical Study of the Reactions of OH Radical with Hydrocarbons	20 20
I-C-5 Ab Initio Study of the Low-Lying Excited States of ClOCl	20
I-C-6 Ab Initio Study of the Excited States of HOBr	20
I-C-7 Theoretical Study of the Molecular Structure of the $NO_3^-(HNO)_m$	
and $NO_3^-(HNO)_m \cdot H_2O$ Anions	20
I-C-8 Investigation of the Potential Energy Surfaces for the Ground \tilde{X}^1A_1 and Excited \tilde{C}^1B_2	•
Electronic states of SO ₂	20
I-D-1 Theoretical Study on Spectroscopic Properties of Positive, Neutral, and Negative Speci	Δ¢.
of BCl ₂ and AlCl ₂ : The Stability of the Negative Species	
I-D-2 The Structures of the Ground and Excited States of (H ₃ NHNH ₃) Radical	21
I-D-3 The Heat of Formation of the SiF ₂ ⁺⁺ Dication: A Theoretical Prediction	21
I-D-4 Electronic Isomers in $[(CO_2)_n ROH]^-$ Cluster Anions. II. Ab initio Calculations	
I-D-5 Theoretical Studies of [Si ₄ NO] ⁻ Clusters with <i>Ab Initio</i> MO and DFT Methods	22
I-D-6 Theoretical Studies of Core-Excitation and Auger-Decay Processes	
in Site- or State-Specific Bond Dissociation Reaction with <i>Ab Initio</i> MO Methods	22
I-E Prediction of Protein Tertiary Structures from the First Principles	
I-E-1 Classification of Low-Energy Conformations of Met-Enkephalin in the Gas Phase and in a Model Solvent Based on the Extended Scaled Particle Theory -	23
I-E-2 Temperature Dependence of Distributions of Conformations of a Small Peptide	
I-E-3 α-Helix Propensities of Homo-Oligomers in Aqueous Solution	23
Studied by Multicanonical Algorithm	23
I-E-4 Replica-Exchange Molecular Dynamics Method for Protein Folding	23
I-F Theoretical Studies of Chemical Reaction Dynamics	

I-F-1 Quantum Reaction Dynamics of Heavy-Light-Heavy Systems:	
	2.4
Reduction of the Number of Potential Curves and Transitions at Avoided Crossings	
I-F-2 Quantum Reaction Dynamics of Cl + HCl → HCl + Cl: Vibrationally Nonadiabatic Reactions	
Vibrationally Nonadiabatic Reactions	-24
I-F-3 Quantum Reaction Dynamics of an Asymmetric Exoergic Heavy-Light-Heavy System:	
$Cl + HBr \rightarrow HCl + Br$	-24
I-F-4 On the <i>J</i> -Shift Approximation in Quantum Reaction Dynamics	24
I-F-5 Electronically Adiabatic Chemical Reactions	27
A selection and Authority Adiabatic Chemical Reactions	25
Analyzed by the Semiclassical Theory of Nonadiabatic Transition	-23
I-G Theory of Nonadiabatic Transition	
I-G-1 Patterns of Time Propagation on the Grid of Potential Curves	-25
I-G-2 Analytic Solution of Two-State Time-Independent Coupled Schrödinger Equations	
in an Exponential Model	-25
I-G-3 Semiclassical Theory of Nonadiabatic Transitions in a Two-State Exponential Model	-25
I-H New Way of Controlling Molecular Processes	20
	25
I-H-1 New Way of Controlling Molecular Processes by Time-Dependent External Fields	
I-H-2 Control of Molecular Photodissociation with Use of the Complete Reflection Phenomenon	-26
I-I Molecular Switching with Use of the Complete Reflection Phenomenon	
I-I-1 Molecular Switching in a Two-Dimensional Constriction	-26
I-J Theoretical Study of Dissociative Recombination	
I-J-1 Analytical Treatment of Singular Equations in Dissociative Recombination	26
I-K Theoretical Studies of Ultrafast Nonlinear Optical Spectroscopy of Molecules	20
in Condensed Phases	
I-K-1 The Fifth- and Seventh-Order Two-Dimensional Raman Spectroscopy	
for Harmonic System with Nonlinear System-Bath Interactions: Gaussian-White Case	-27
I-K-2 The Fifth and Seventh Order 2D Raman Spectroscopy for Harmonic System	
with Nonlinear System-Bath Interactions: Gaussian-Markovian Case	-27
I-K-3 Structural Information from Two-Dimensional Fifth-Order Raman Spectroscopy	 _27
I-K-4 Two-Dimensional Line Shape Analysis of Photon Echo Signal	27
1-K-4 Two-Dimensional Elife Shape Aliasysts of Floring Edit Signal	-21
I-K-5 Cage Dynamics in the Third-Order Off-Resonant Response of Liquid Molecules:	•
A Theoretical Realization	
I-K-6 Dynamical Stokes Shift Observed by Two-Dimensional Raman Spectroscopy	-28
I-K-7 A Thermal Bath Induced New Resonance in Linear and Nonlinear Spectra	
of Two-Level Systems	-28
I-L Ab Initio Molecular Orbital Studies of Organic Conductors	
I-L-1 Structures and Electronic Phases of the Bis(Ethylenedithio)Tetrathiafulvalene	
(BEDT-TTF) Clusters and κ -(BEDT-TTF) Salts:	
A Theoretical Study Based on Ab Initio Molecular Orbital Methods	-28
I-L-2 Ab Initio MO Studies on Electronic States of DCNQI Molecules	
I-L-3 Theoretical Study on Electron Correlation of 1-D (DCNQI) ₂ M (M = Li, Ag)	-29
I-M Electron, Poritron and Heavy Particle Scattering Dynamics	
I-M-1 Strong Mode Dependence of 3.8-eV Resonance in CO ₂ Vibrational Excitation	
by Electron Impact	20
by Electron Impact	-30
I-M-2 Strong Suppresion of Positronium Formation in Fluorinated Hydrocarbons	
in Positron Scattering: A Possibility of Bound States	-30
I-M-3 Electron Capture in Collisions of Protons with CO Molecules in the keV Region:	
The Steric Effect	-30
I-M-4 The Isomer Effect on Charge Transfer: Collisions of Ground State C ⁺ Ions	
with Allene and Propyne (C ₃ H ₄)	-30
I-M-5 Electron Capture and Excitation in Collisions of Si ²⁺ Ions with He Atoms	-50
at Intermediate Energies	2.1
at Intermediate Energies	-31
I-N Electronic Structure of a Molecule in Solution	
I-N-1 The Syn-/Anti- Conformational Equilibrium of Acetic Acid in Water	
Studied by the RISM-SCF/MCSCF Method	-32
I-N-2 RISM-SCF Study for the Free Energy Profile of Menshutkin Type Reaction	
I-N-2 RISM-SCF Study for the Free Energy Profile of Menshutkin Type Reaction NH ₃ + CH ₃ Cl → NH ₃ CH ₃ ⁺ + Cl ⁻ in Aqueous Solution	-32
I-N-3 Thermodynamic Analysis of the Solvent Effect on Tautomerization of Acetylacetone:	52
A A Lavis A manager	20
An Ab Initio Approach	-33
I-N-4 Solvation Dynamics of Benzonitrile Excited State in Polar Solvents:	
A Time-Dependent Reference Interaction Site Model Self-Consistent Field Approach	-33
I-N-5 Revisiting the Acid-Base Equilibrium in Aqueous Solutions of Hydrogen Halides:	
Study by the <i>ab Initio</i> Electronic Structure Theory	
Combined with the Statistical Mechanics of Molecular Liquids	-33

I-N-6 Ab Initio Study on Molecular and Thermodynamic Properties of Water:	
A Theoretical Prediction of pK_w over a Wide Range of Temperature and Density	33
I-O Solvation Thermodynamics of Protein and Related Molecules	
I-O-1 Calculation of Solvation Free Energy for Peptide in Salt Solution Using the RISM Theo	ry -34
I-O-2 Singular Behavior of the RISM Theory Observed for Peptide in Salt Solution	34
I-O-3 Analysis on Conformational Stability of C-Peptide of Ribonuclease A in Water	
Using the Reference Interaction Site Model Theory and Monte Carlo Simulated Annealing	35
I-P Collective Density Fluctuations in Polar Liquids and Their Response to Ion Dynamics	
I-P-1 Effect of Molecular Symmetry on Electrical Potential Fluctuations of Solvent	
around Solute in Polar Liquid	35
I-P-2 Mode-Coupling Theory for Molecular Liquids Based on the Interaction-Site Model	36
I-P-3 Time-Correlation Functions in Molecular Liquids Studied by the Mode-Coupling Theory	
Based on the Interaction-Site Model	36
I-P-4 Dynamics of Ions in Liquid Water: An Interaction-Site-Model Description	36
I-P-5 Interaction-Site-Model Description of Collective Excitations in Liquid Water. I:	
Theoretical Study	36
I-P-6 Interaction-Site-Model Description of Collective Excitations in Liquid Water. II:	
Comparison with Simulation Results	36
I-P-7 Solvation Dynamics of a Quadrupolar Solute in Dipolar Liquids	37
Results for a One-Dimensional System	37
I-P-9 Polaron Density Matrix and Effective Mass at Finite Temperature	37
I-Q Liquid-Solid Interface	
I-Q-1 Acceleration of Liquid Structure Calculations by Modified Direct Inversion	
in the Iterative Subspace	38
I-Q-2 Extended States of a Shallow Donor Located Near a Semiconductor-Insulator Interface	38
I-O-3 Free Energy Profiles of Electron Transfer at Water-Electrode Interface	
Studied by the Reference Interaction Site Model Theory	38
I-Q-4 Self-Consistent Description of a Metal-Water Interface by the Kohn-Sham Density	
Functional Theory and the Three-Dimensional Reference Interaction Site Model	38
I-Q-5 Effective Interaction between Hard Sphere Colloidal Particles	
in a Polymerizing Yukawa Solvent	39
I-Q-6 Potential of Mean Force between Two Molecular Ions in a Polar Molecular Solvent:	
A Study by the Three-Dimensional Reference Interaction Site Model	39
I-Q-7 Self-Consistent, Kohn-Sham DFT and Three-Dimensional RISM Description	
of a Metal-Molecular Liquid Interface	39
I-R Dimensional Crossovers and Randomness Effects in Quasi-One-Dimensional Organic Cond	luctors
I-R-1 Spin-Density-Wave Phase Transitions	
in Quasi-One-Dimensional Dimerized Quarter-Filled Organic Conductors	40
I-R-2 Phase Transitions from Incoherent and from Coherent Metal Phases	
in Quasi-One-Dimensional Organic Conductors	
I-R-3 Quantum Phase Transition and Collapse of Mott Gap	
in $d = 1 + \varepsilon$ Dimensional Half-Filled Hubbard Systems	40
I-R-4 Charge Gap and Interchain Correlation	
in Quasi-One-Dimensional Dimerized Organic Conductors	40
I-R-5 Magnetic and Pairing Correlation Functions and Interchain Coherence	
in Quasi-One-Dimensional Dimerized Organic Conductors	41
I-R-6 Effects of Dimerization on Spin, Charge and Hopping Correlation Functions	
in Quasi-One-Dimensional Organic Conductors	41
I-R-7 Interplay of Correlation, Randomness and Dimensionality Effects	
in Weakly-Coupled Half-Filled Random Hubbard Chains	41
I-R-8 Dimensionality Effects in Half-Filled Random Hubbard Chains	41
I-S Competition among Different Charge and Lattice Ordering States	
in One-Dimensional Metal Complexes	40
I-S-1 Numerical Studies of Ground State Phase Diagrams for the MMX Chains	
I-S-2 Magnetic Property of MMX Chains as Dimerized Quarter-Filled Systems	42
I-S-3 Structural and Magnetic Transitions	40
in Quasi-One-Dimensional Halogen-Bridged Binuclear Metal Complexes	42
I-S-4 Electric-Field Response of Exciton in Electroluminescent Polymer	42
Organic and Oxide Conductors	
I-T-1 Possible Magnetic Orders and Cation Dependence of $(Et_nMe_{4-n}Z)[Pd(dmit)_2]_2$	13
I-T-2 Role of Dimensionality in Dimerized Two-Band Systems	
I-T-3 Quasi-One-Dimensional Natures in $(Et_nMe_{4-n}Z)[Pd(dmit)_2]_2$	

I-T-4 Possible Ground State Phases of Pd(dmit) ₂ Salts	
with Different Orders	es 44
I-T-7 Two-Loop Renormalization-Group Analysis of Two-Dimensional Electron Systems RESEARCH ACTIVITIES II	
RESEARCH ACTIVITIES II	-43
Department of Molecular Structure II-A Laboratory and Astronomical Spectroscopy of Transient Molecules	
II-A-1 The detection of the Free Radical FO ($X^2\Pi_{3/2}$) by Microwave Spectroscopy	
II-A-2 Microwave Spectroscopic Detection of Transition Metal Hydroxide: CuOH and AgOH II-A-3 Microwave Spectrum of the Inversion-Rotation Transition of the D_3O^+ Ion: $\Delta k = \pm 3n$ Interaction and Equilibrium Structure	
II-B Laser Cooling and Trapping of Neutral Atoms	40
II-B-1 Ouantum Statistical Effects in Ultracold Ionizing Collisions	
between Spin-Unpolarized Metastable He(2s ³ S ₁) Atoms	47
II-C Spectroscopy of Atoms and Ions in Liquid Helium	
II-C-1 Spectroscopic Study of Alkali-Earth Atoms in Liquid ³ He	47
II-D Endohedral Metallofullerenes: New Fullerene Molecules with Novel Properties	40
II-D-1 Endohedrally Metal-Doped Heterofullerenes: La@ C_{81} N and La $_2$ @ C_{79} N	49 49
II-E Structure and Function of Respiratory Terminal Oxidases	.,
II-E-1 Fourier-Transform Infrared Studies on Azide Binding to the Binuclear Center	
of the Escherichia coli bo-Type Ubiquinol Oxidase	50
II-E-2 Fluoride-Binding to the oxidized <i>Escherichia coli bd</i> -Type Ubiquinol Oxidase	
Studied by Visible Absorption and EPR Spectroscopies	50
II-E-3 Azide- and Cyanide-Bindings to the <i>Escherichia coli bd</i> -Type Ubiquinol Oxidase Studied by Visible Absorption, EPR and FTIR Spectroscopies	50
II-F Structure and Function of Transmembrane Electron Transfer System	50
in Neuroendocrine Secretory Vesicles	
II-F-1 Diethylpyrocarbonate-Modification Abolishes Fast Electron Accepting Ability of Cytochrome b_{561} from AsA ⁻ but Does Not Influence on Electron Donation to MDA Radica Identification of the Modification Sites by Mass Spectrometric Analyses	al: 51
II-G Biomolecular Science	0.1
II-G-1 Time-Resolved UV Resonance Raman Detection of a Transient Open Form	
of the Ligand Pathway in Tyr64(E7) Myoglobin	52
II-G-2 UV Resonance Raman Studies of α-Nitrosyl Hemoglobin Derivatives:	
Relation between the α 1- β 2 Subunit Interface Interactions and the Fe-Histidine Bonding of α Heme	52
II-G-3 Observation of Cu-N ₃ ⁻ Stretching and N ₃ ⁻ Asymmetric Stretching Bands	32
for mono-Azide Adduct of Rhus vernicifera Laccase	53
II-G-4 Studies of Bovine Enterovirus Structure by Ultraviolet Resonance Raman Spectroscopy -	53
II-G-5 Spectroscopic Characterization and Kinetic Studies of a Novel Plastocyanin from the Green Alga <i>Ulva pertusa</i>	
II-G-6 Aliphatic Hydroxylation by a Bis(μ-Oxo)Dinickel(III) Complex	53
II-G-7 The Structure and Unusual pH Dependence of Plastocyanin from the Fern Dryopteris	
Crassirhizoma: The Protonation of an Active Site Histidine is Hindered by π - π Interactions	54
II-G-8 Model Complexes of the Active Form of Galactose Oxidase.	
Physicochemical Properties and Reactivity of Cu(II)- and Zn(II)- Phenoxyl Radical Complex of the Novel Organic Cofactor	es E 4
II-G-9 A Bis(μ-Oxo)Dicopper(III) Complex with Sterically Hindered Aromatic Nitrogen Donors	34
Structural Characterization and Reversible Conversion).
between Copper(I) and Bis(µ-Oxo)Dicopper(III) Species	55
II-H Fast Dynamics of Photoproducts in Solution Phases	
II-H-1 Intramolecular Vibrational Energy Redistribution and Intermolecular Energy Transfer	
in the (d,d) Excited State of Nickel Octaethylporphyrin	55
II-H-2 Time-Resolved Resonance Raman Study of Intermediates	= -
Generated after Photodissociation of Wild-type and Mutant CO-Myoglobins	56
as a Light Source of Picosecond Time-Resolved Raman Spectroscopy	56
II-H-4 Nanosecond Temperature Jump and Time-Resolved Raman Study of Thermal Unfolding	50
of Ribonuclease A	56

II-H-5 Evidence for π - π Interactions in the S ₁ State of Zn Porphyrin Dimers	
Revealed by Picosecond Time Resolved Resonance Raman Spectroscopy	57
II-I-1 Spin Chemistry of Metallofullrenes	58
II-J Site Selective Spectroscopy in Solid Crystals	
II-J-1 NQR by Coherent Raman Scattering of a Triplet Exciton in a Molecular Crystal	58
II-K State Correlated Raman Spectroscopy	
II-K-1 An Analysis of Polarized Raman Scattering Measurements for the Orientational Ordering of Ferro- and Antiferroelectric Liquid Crystal	50
· · ·	
RESEARCH ACTIVITIES III	-61
Department of Electronic Structure	
III-A States of Molecular Associates in Solutions	
III-A-1 Raman Spectroscopic Study on Acetic Acid Clusters in Aqueous Solutions:	
Dominance of Acetic-Acid Association Producing Micro-Phases	61
III-A-2 Structures and Energies of Acetic Acid Aggregates in Aqueous Solution	
Studied by the RISM-SCF Method	62
III-A-3 Rayleigh Wing Spectra and Microphase Formation	
III-A-4 Structures of Clusters in Methanol-Water Binary Solutions Studied by Mass Spectrometry and X-ray Diffraction	63
III-A-5 Structure and Dynamics of 1,4-Dioxane-Water Binary Solutions	
Studied by X-ray diffraction, Mass Spectrometry, and NMR Relaxation	63
III-B Ultrafast Dynamics of Photoexcited Molecules	
Studied by Transient Absorption and Transient Raman Spectroscopy Methods	
III-B-1 Construction of a Tunable and Synchronized Picosecond-Femtosecond Double Laser Sys	
for the Study of Photodissociation Dynamics of Molecular Clusters in Solution	04
in Aromatic Molecular Cluster Ions	
III-C-1 Photodissociation Spectroscopy of Benzene-Acetic acid Mixed Cluster Ions	65
III-C-2 Structural Isomers of Benzene-Phenol Mixed Dimer Cation	66
III-D Spectroscopy and Dynamics of Vibrationally Excited Molecules and Clusters	
III-D-1 Overtone Spectroscopy of Jet-Cooled Phenol Studied by Nonresonant Ionization	67
Detected IR Spectroscopy	6/
Studied by IR Dip Spectroscopy and Ab Initio Molecular Orbital Calculation	67
III-E Femtosecond Time-Resolved Photoelectron Imaging	0.
III-E-1 Femtosecond Time-Resolved Photoelectron Imaging on Ultrafast Electronic Dephasing	
in an Isolated Molecule	68
III-F Dynamical Stereochemistry	6 0
III-F-1 Vector Correlation in Molecular Photodissociation III-G Photochemistry on Well-Defined Surfaces	08
III-G-1 Photo-stimulated Desorption of Rare Gas Atoms Induced by UV-NIR Photons	
at a Semiconductor Surface	69
III-G-2 Photochemistry of Methane on Cu(111)	69
III-G-3 Coadsorption Effect of Cs on Photochemistry of Methane on Pt(111)	69
III-H Multiphoton Photoelectron Spectroscopy of Electronic States at Metal Surfaces	
III-H-1 Visible and VUV Two-Photon Photoelectron Spectroscopy of the Surface State of a Clean Pt(111) Surface	70
III-I Ultrafast Reaction Dynamics of Photochromism and Related Phenomena	/ 0
III-I-1 Time-Resolved Study on Unconventional Fluorescence of an Azobenzene Liquid Crystal	
and Its Phase Transition	71
III-I-2 Solvation Dynamics of Excited p-Methoxy-p'-cyanodiphenylacetylene in n-Butanol:	
Simultaneous Analysis of Time-Resolved Fluorescence Anisotropy and Stokes Shift	
III-I-3 A Combined Experimental and Theoretical Study on the Photochromism of Aromatic Ani	
III-I-4 Photochromism in 2-(2',4'-Dinitrobenzyl)pyridine Studied by Ultrafast Laser Spectroscop III-J Photophysics and Photochemistry in Interface Layers and Mesoscopic Systems	,y /1
III-J-1 Time-Resolved and Near-Field Scanning Optical Microscopy Study	
on Porphyrin J-Aggregate	72
III-J-2 Excitation Energy Transfer in Langmuir-Blodgett Films	
of 5-(4-N-Octadecylpyridyl)-10,15,20-tri-p-tolylporphyrin	
on Gold-Evaporated Glass Substrates Studied by Time-resolved Fluorescence Spectroscopy	72
III-J-3 Carrier Dynamics on Titanium Dioxide Single Crystals by Femtosecond Transient Grating Spectroscopy	72
by remiosecond trainisient Graning Spectroscopy	12

RESEAL	RCH ACTIVITIES IV	-75
	tment of Molecular Assemblies	
1 V -A	Solid State Properties of Phthalocyanine Salts and Related Compounds IV-A-1 ESR Properties of Oriented Single Crystals of Co _x Ni _{1-x} Pc(AsF ₆) _{0.5}	75
	IV-A-1 ESR Froperties of Oriented Single Crystals of $Co_x Nr_{1-x} FC(AsF_6)_{0.5}$ IV-A-2 Pressure-Temperature Phase Diagram of NiPc(AsF ₆) _{0.5}	13 75
	IV-A-3 New Raman Bands Found in the Mixed Crystals of $Ni_{1-x}Co_xPc(AsF_6)_{0.5}$	
IV-B	Structure and Properties of Organic Conductors	70
2, 2	IV-B-1 Spectroscopic Study of Isostructural Charge-Transfer Salts:	
	Non-Metallic DMTTA-BF ₄ and Metallic DMTSA-BF ₄	76
	IV-B-2 Suppression of the Metal-Insulator Transition	
	under High Pressure in 1:1 Metallic DMTSA-BF ₄	77
	IV-B-3 Band Structure of Organic Metals (BDT-TTP) $_2X$ (X = ClO ₄ , ReO ₄), (ST-TTP) $_2AsF_6$,	
	and (BDS-TTP) ₂ AsF ₆ Studied by Reflection Spectroscopy	77
	IV-B-4 Insulator-Insulator Phase Transition of θ-(BDT-TTP) ₂ Cu(NCS) ₂ : Strongly Correlated Two-Dimensional System	
	Strongly Correlated Two-Dimensional System	'/'/
	IV-B-5 Phase Transition in Narrow-band Organic Metals (BEDT-ATD) ₂ X(solvent) $(X = PF_6, AsF_6, BF_4; solvent = THF, DHF, DO)$	70
	IV-B-6 Experimental and Theoretical Estimation of the Site-Energy Difference	/0
	in Et ₄ N(DMTCNQ) ₂	78
	IV-B-7 κ '-(ET) ₂ Cu ₂ (CN) ₃ —Superconductor with Mixed Cu ₂ (CN) ₃ and N(CN) ₂ Ligands	, 0
	in the Anion Layer Studied by Polarized Reflection Spectroscopy	79
	IV-B-8 Raman-active C=C Vibrations of κ -(BEDT-TTF) ₂ Cu[N(CN) ₂]Br	
	and Its Deuterated Analogues	
	IV-B-9 Determination of the Charge on BEDO-TTF in Its Complexes by Raman Spectroscopy	79
	IV-B-10 Re-examination of Bromide, Chloride and Iodide Salts	
	of Bis(ethylenedioxy)tetrathiafulvalene (BEDO-TTF) by Spectroscopic Methods	79
	IV-B-11 First Observation of the Plasmon Absorption by Reflection Spectroscopy	00
IV C	in the Single Crystal of Two-dimensional Organic Metal Microscopic Investigation of Molecular-Based Conductors	80
14-0	IV-C-1 Low-Temperature Electronic States in θ-(BEDT-TTF) ₂ RbZn(SCN) ₄ :	
	Competition of Different Ground States	81
	IV-C-2 Magnetic Properties of a New Two-Chain Organic Conductor: (CPDT-STF)-TCNQ	81
	IV-C-3 ESR and NMR Investigation of β' - $R_4Z[Pd(dmit)_2]_2$	82
	IV-C-4 New Type Charge Localization in θ -(BEDT-TTF) ₂ CsZn(SCN) ₄	82
IV-D	Thermodynamic Study of Organic Conductors	
	IV-D-1 Electronic Ground States of (BEDT-TTF) ₂ X System	
	Studied by Specific Heat Measurements	83
	IV-D-2 Thermodynamic Investigation of the Electronic States	0.2
	of Deuterated K-(BEDT-TTF) ₂ Cu[N(CN) ₂]Br	83
	IV-D-3 Electronic Specific Heat at the Boundary Region of Mott Transition in Two-Dimensional Electronic System of κ-(BEDT-TTF) ₂ Cu[N(CN) ₂]Br	Q.1
IV-F	Photoelectron Spectroscopy of Organic Solids in Vacuum Ultraviolet Region	04
1 V -L2	IV-E-1 Angle-Resolved Photoemission Spectra of ω-(n-pyrrolyl) Alkanethiol Self-Assembled	
	Nomolayers: Possible Assemblies of Substituent Pyrrole	85
	IV-E-2 Structure of Copper- and H ₂ -Phthalocyanine Thin Films on MoS ₂	
	Studied by Angle-Resolved Ultraviolet Photoelectron Spectroscopy	
	and Low Energy Electron Diffraction	85
	IV-E-3 Electronic Structure of Poly (1,10-Phenanthroline-3,8-diyl) and Its K-doped State	
	Studied by Photoelectron Spectroscopy	86
137 E	IV-E-4 Electronic Structures of Alq ₃ /LiF/Al Interfaces Studied by UV Photoemission	86
1 V -F	Electrical Conduction and its Related Properties of Organic Solid	96
	IV-F-1 Three Component Organic Superconductors: Intercalation of KH into C_{60}	00 86
IV-G	Magnetism and Superconductivity of BETS Conductors	00
11-O	IV-G-1 Chemical Control of Electrical Properties and Phase Diagram	
	of a Series of λ -Type BETS Superconductors, λ -BETS ₂ GaBr _x Cl _{4-x}	87
	IV-G-2 Evidence for the First Order Transition between High-temperature Superconducting	
	and Low-temperature Insulating Phases in λ -BETS ₂ Fe _x Ga _{1-x} Cl ₄ ($x \approx 0.45$)	87
	IV-G-3 Coexistence of Antiferromagnetically Ordered Fe ³⁺ Spins and Metal π -Electrons	
	in λ -BETS ₂ FeCl ₄	88
	IV-G-4 Pressure-Induced Superconducting Transition of λ-(BETS) ₂ FeCl ₄	
	with π -d Coupled Antiferromagnetic Insulating Ground State at Ambient Pressure	88

	IV-G-5 Electric and Magnetic Properties of BETS Conductor with Modified λ-type Structure,	
	λ '-BETS ₂ GaBr ₄	-89
	IV-G-6 Antiferromagnetic Organic Metal Exhibiting Superconducting Transition,	00
	K-(BETS) ₂ FeBr ₄	-89
TX7 TT	IV-G-7 A New κ-Type Organic Superconductor Based on BETS Molecules, κ-(BETS) ₂ GaBr ₄	-90
	Structural and Electrical Properties of Molecular Crystals at Low Temperature	
an	d/or High Pressure	00
	IV-H-1 Low Temperature Structure Analysis of Unannealed TDAE*C ₆₀ Single Crystal	-90 01
	IV-H-2 X-Ray Diffraction Study of a TDAE $^{\circ}$ C ₆₀ Single Crystal	01
	IV-H-4 High Pressure Structure of $[(C_2H_5)_2(CH_3)_2N][Pd(dmit)_2]_2$	02
	IV-H-5 High-Pressure Four-Probe Resistivity Measurements of the Soft Organic Single Crystals	-92
	up to 100 kbar	02
	IV-H-6 Resistivity Behavior of Organic Conductor, β'-(BEDT-TTF) ₂ ICl ₂ up to 100 kbar	-92 -92
IV-I	Development of New Molecular Conductors	12
-, -	IV-I-1 New Stable Metallic Salt Based on a Donor Molecule	
	Containing <i>peri</i> -Ditellurium Bridges, TMTTeN(SCN) _{0.88}	-93
	IV-I-2 Synthesis, Structures and Properties of New Organic Conductors	,,
	IV-I-2 Synthesis, Structures and Properties of New Organic Conductors Based on Tellurocycle-Fused TTF Donor Molecules	-93
	IV-I-3 New π-Extended Organic Donor Containing a Sable TEMPO Radical	
	as a Candidate for Conducting-Magnetic Multifunctional Materials	-94
	IV I A Synthesis and Properties of New Organic Dopor	
	Containing Two Sable TEMPO Radical Parts	-94
	IV-I-5 Origin of the High Electrical Conductivity of Neutral [Ni(ptdt) ₂]	
	—A Route to Neutral Molecular Metal	-95
	IV-I-6 Structural, Electrical and Magnetic Properties of Low-dimensional Conductors	
	Based on Unsymmetrical π Donor EDT-TTF and Analogous Selenium-substituted Molecules	-95
IV-J	Development of Pulsed Field Gradient NMR Spectroscopy	
	IV-J-1 Self-diffusion Coefficients of a Reentrant Liquid Crystal CBOBP	-96
	IV-J-2 Self-diffusion Coefficients of OBBC and OBBF	-96
	IV-J-3 Self-Diffusion Coefficients of an Anti-Ferroelectric Liquid Crystal MHPOBC	-97
	IV-J-4 Self-diffusion Coefficients of a Hexatic Liquid Crystal PHOAB	-97
	IV-J-5 Calculation of Dipole Moments by MOPAC7	-97
TX7 TZ	IV-J-6 Measurement of Anisotropic Self-Diffusion Coefficient Tensors by PGSE-NMR	-97
1V-K	Phase Transitions and Dynamical Ordering in Liquid Crystals	
	IV-K-1 A Bent and Asymmetrically Hindered Chiral Alkyl Chain of an Antiferroelectric Liquid Crystal as Observed by ² H NMR	07
	IV-K-2 Experimental Spectroscopy of Liquid Crystals, No. 4-6. NMR Spectroscopy, Pt. 1-3	-97 00
TV/_T	Electronic Properties of Alkali-Hydrogen-Carbon Systems	-90
1 4 -L	IV-L-1 NMR Study of Stage-6 Sodium-Hydrogen-Graphite Intercalation Compound	_02
	IV-L-2 <i>In-situ</i> NMR Study of the Reaction Process in Alkali-Hydrogen-Fullerene Systems	
	IV-L-3 Synthesis and NMR study of Alkali-Hydrogen-Single-Walled Carbon Nanotubes	
IV-M	Strutural and Electronic Properties of New Carbon Materials	
_ , _,_	IV-M-1 ¹³ C NMR Study of Single-Walled Carbon Nanotubes	100
	IV-M-2 Dynamics of Water Molecules Confined in Activated Carbon Fiber	101
IV-N	Structural and Electronic Properties of Fullerene-Based Compounds	
	IV-N-1 Electronic Properties of Alkali-THF-C ₆₀ Single Crystals	102
	IV-N-2 NMR Study of Sodium-THF-C ₆₀ Single Crystals	102
	IV-N-3 Magnetic Behaviors of High-Temperature Reaction Products of Cerium Metal	
	and C ₆₀ Solid	103
	IV-N-4 Structure and Raman Scatterings of Cs ₃ C ₆₀ under High Pressure	104
	Magnetic Local Structure and Magnetic Interactions	
in	Molecule Based and Organic-Inorganic Hybrid Magnets	
	IV-O-1 Solid State High Resolution Deuterium NMR Study of Electron Spin Density Distribution	
	of Hydrogen-bonded Organic Ferromagnetic Compound 4-Hydroxyimino-TEMPO	05
	IV-O-2 Magic Angle Spinning ¹ H-NMR Study of the Spin Density Distribution	
	of Pyridyl Nitronyl Nitroxides in the Crystalline Phase	05
	IV-O-3 Local Magnetic Structure of Layered Compounds Cu ₂ (OD) ₃ X	
	with Exchangeable Acid Anion X Studied by Solid State High Resolution Deuterium NMR	.06
	IV-O-4 Solid State High Resolution NMR Studies of Electron Spin Densities	10-
	in Charge-Transfer Complex-Based Organic Ferromagnets	106
	IV-O-5 Variable Magnetism of Layer-Structured Compounds Cu ₂ (OD) ₃ X	
	with Exchangeable Anion X: Magnetic Local Structure and Magnetic Interactions Determined by Solid-State High-Resolution Deuterium NMR	100
	Determined by Solid-State riigh-Kesolution Deuterfain NMK	100

IV-	-P Proton Transfer Tunneling in Interacting Hydrogen Bonds in the Solid State IV-P-1 Proton Dynamics in Interacting Hydrogen Bonds in the Solid State:	
	Proton Tunneling in the NHO Hydrogen Bonds	
	of N,N'-Di(2-Hydroxy-1-Naphthylmethylene)-p-Phenylenediamine	107
IV-	-Q Systematic Study of Organic Conductors	
	IV-Q-1 Structural Genealogy of BEDT-TTF-Based Organic Conductors I.	
	Parallel Molecules: β and β" Phases	108
	IV-Q-2 Structural Genealogy of BEDT-TTF-Based Organic Conductors II.	100
	Inclined Molecules: θ, α, and κ Phases	108
	IV-Q-3 $2k_F$ CDW Transition in β -(BEDT-TTF) ₂ PF ₆ Family Salts	109
	IV-Q-4 Transport Properties of α"-Phase Organic Conductors, (BEDT-TTF) ₂ CsHg(SCN) ₄ and (BEDT-TTF) ₂ K _{1.4} Co(SCN) ₄	100
	ARCH ACTIVITIES V	· - 111
Depa	artment of Applied Molecular Science	
$ar{\mathbf{V}}$ -A	A Molecular Mechanisms of Oxygen Activation by Heme Enzymes	
	V-A-1 Formation and Catalytic Roles of Compound I	
	in the Hydrogen Peroxide-Dependent Oxidation by His64 Myoglobin Mutants	111
	V-A-2 The Mechanisms of <i>N</i> -Demethylation Catalyzed by Heme Enzymes:	
	Mechanisms of Sulfoxidation Catalyzed by High-Valent Intermediates of Heme Enzymes:	
	Electron Transfer vs Oxygen Transfer Mechanism	111
	V-A-3 Effects of the Arrangement of a Distal Catalytic Residue on Regioselectivity	110
¥7 1	and Reactivity in the Coupled Oxidation of Sperm Whale Myoglobin Mutants	112
V - J	B Model Studies of Non-Heme Proteins	110
	V-B-1 A Model for Peroxo Intermediates in Reactions Catalyzed by Non-Heme Iron Enzymes	112
	V-B-2 An Unusual Conversion of a Ni(III) ₂ (μ-O) ₂ Core into a Ni(II) ₂ (μ-OO) ₂ Core	110
	by H ₂ O ₂ and Oxygenation of LigandV-B-3 Structural and Functional Model Complexes for the Catechol-Bound Intermediate	112
	of Intradiol-Cleaving Catechol Dioxygenases	112
v	C Transition Metal Oxide Clusters	113
V - (V-C-1 Direct Observation by Electrospray Ionization Mass Spectrometry of a Key Intermediate	2
	in the Formation of a Double Bookshelf-Type Oxide Cluster	114
V-I	D Aqueous Organometallic Chemistry	114
V -1	V-D-1 A Unique pH-Dependent Transfer Hydrogenation of Water-Soluble Carbonyl Compoun	ds
	with an Organometallic Aqua Complex as a Catalyst Precursor in Water	114
V-I	E Synthesis of New High-spin Molecule	11.
	V-E-1 Structure and Magnetic Property of the Organic Triradical with Triazine Skeleton;	
	$1,3,5$ -Tris $\{p-(N-\text{oxy}-N-\text{tert}-\text{butylamino})-\text{phenyl}\}$ triazine	115
V-I	F Construction of New Molecule-Based Magnets	
	V-F-1 One-Dimensional Ferro- and Ferrimagnetic Chains Made up of an Alternating Array	
	of 1,3-Bis(<i>N-tert</i> -Butyl- <i>N</i> -oxy-amino)-benzene Derivatives and Mn(II)(hfac) ₂	115
	V-F-2 Influence of the Thermal Excitations of the Ferrimagnetic $(\overline{1}/2,5/2,\overline{1}/2)$ Linear Trimer	
	on the Paramagnetic Behavior of the Layered Metal-Radical Complex	
	${Mn(hfac)_2}_3(R_N)_2 \cdot n - C_7H_{16}$	116
V-(G Mn(II)-Induced Formation of a [3+3] Benzene Dimer Derivatives	
	V-G-1 Mn(II)-Induced Formation and Structural Elucidation of a [3+3] Benzene Dimer Deriva	
	from <i>m</i> -Phenylenebis(<i>N</i> -tert-butylaminoxyl)	117
V-I	H Synthesis of Chiral Molecule-Based Magnets	
	V-H-1 A Chiral Molecule-based Metamagnet Made by a Chiral Triplet Organic Radical	
	and Manganese Ion	
	V-H-2 Synthesis and Characterization of a Novel Chiral Molecular-based Ferrimagnet Prepared	
	from a Chiral Nitronyl Nitroxide Radical and Manganese(II) Ion	118
V-J	I Synthesis and Characterization of Quantum-Spin Systems	
	V-I-1 Magnetic Properties of Low Dimensional Quantum Spin Systems Made	110
	of Stable Organic Biradicals PNNNO, F ₂ PNNNO and PIMNO	119
	V-I-2 Construction of a Quantum-Spin System of $S = 1/2$ Antiferromagnetic Chain	110
T 7 7	with the Next-Nearest-Neighbor Interactions	119
V	J Pressure Effects on Magnetic Materials	
	V-J-1 Pressure-Induced Crossover from Alternating to Uniform Interaction	100
	in an $S = 1/2$ One-Dimensional Heisenberg Antiferromagnet	120
	V-J-2 Pressure Effects on Organic Radicals with Ferromagnetic and Antiferromagnetic Interactions	120
	With Ferromagnetic and Antiferromagnetic Interactions	
	v - i - i r ressure ellect ou ivili c outdiexes of disaminoxyl Kadicais	1 / 1]

of the Y _{1-x} Gd _x Mn ₂ Intermetallic Compounds	netic Properties
	121 ·
V-J-5 Concentration and Pressure Dependence of the Magnetic Order in the $Y(Mn_{1-x}Me_x)_2$ Compounds with $Me = Al$, Fe and Ni	ering
In the Y (MI) _{1-x} Me _x) ₂ Compounds with Me = AI, Fe and N1 V. V. December Induced by Electronic Transitions at the Surface of vo	n der Weels Condensates
V-K Desorption Induced by Electronic Transitions at the Surface of va	
V-K-1 Absolute Measurement of Total Photo Desorption Yield of S Range	
V-K-2 Desorption of an Excimer from the Surface of Solid Ne by Lo	our Engrav Electron or Photon
Impact	ow Ellergy Electron of Photon
V-L Synthesis and Physical Properties of Novel Molecular Metals	123
V-L-1 (CPDT-STF)(TCNQ):	
A New Charge-Transfer Complex Metallic Down to Low Temper	rature12/
V-L-2 Structures and Electrical Properties of (EO-TTP) ₂ AsF ₆	
V-L-3 A Quasi Three-Dimensional Organic Conductor	124
Based on a TTP Analogue Containing Thiopyran-4-ylidene	125
V-L-4 Structures and Properties of Organic Metals Based on Dimeth	nyl
Substituted TTP Analogue	125
V-L-5 Synthesis and Properties of Methylthio Substituted ST-TTP I	125 Derivatives125
V-M Development of Model Core Potentials and Post Hartree-Fock Ca	lculations
to Atoms and Molecules	iculations
V-M-1 Theoretical Study of Low-Lying Electronic States of TiCl an	d 7r Cl127
V-M-2 Benchmarking of Model Core Potentials: Application to the	Group 4 Metal Halogen
Complexes (MX_4 : $M = Ti$, Zr , Hf and $X = F$, Cl , Br , I)	127
V-M-3 Configuration Interaction Study of Differential Correlation E	nergies in Ca+ Ca and Ca127
V-N Theoretical Study of the Electronic Structures of Weakly Bound M	
V-N-1 <i>Ab initio</i> Study of the van der Waals Molecule ArHF	128
V-N-2 Ab initio Molecular Orbital Study of Fe(CO) _n ($n = 1, 2$ and 3)128
V-N-3 Ab initio Study on the Ground State of the C_3O_2 Molecule	·128
V-N-4 On the Calculation of Binding Energy of the $(C_6H_6)^{3+}$ Ion	
V-O Molecular Dynamics Study Using Potentials by ab initio Molecular	
V-O-1 Molecular Dynamics Study of Liquid Mercury in the Density	Region
between Metal and Nonmetal	129
V-O-2 The Liquid-Vapor Coexistence Curves of Fluid Mercury	
V-P Millimeter-Wave Spectroscopy Combined with Pulsed-Jet Expans	
of the Novel Unstable Species and the van der Waals Mode Transition	
V-P-1 Millimeter-Wave Spectroscopy of the van der Waals Bending	Band
v-P-1 Millimeter-Wave Spectroscopy of the van der Waals Bending of the ArDCN Cluster	131
V-P-2 Direct Observation of the van der Waals Bending Hot Bands	of the Ar-HCN Cluster
by Millimeter-Wave Spectroscopy	131
V-P-3 Submillimeter-Wave Spectroscopy of the van der Waals Bend	
V-P-4 Millimeter-Wave Spectroscopy of the van der Waals Bending	Band of OCO-HF
with a Cymansonia Int Eyrongian Tachnique	
with a Supersonic Jet Expansion Technique	133
with a Supersonic Jet Expansion TechniqueV-Q Ion-Molecule Reactions in the Troposphere	133
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric	133
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric	: Ions133
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric	: Ions133
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI	: Ions133
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience	2 Ions133
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite	2 Ions133 2 Ions134 135 d Molecules
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State	2 Ions134135 d Molecules es at the K-Shell Threshold -135
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF	d Molecules es at the K-Shell Threshold -135
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF ₃	d Molecules es at the K-Shell Threshold -135
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF ₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s	2 Ions
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF ₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s Excited States of CH ₄	2 Ions
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N₂: Doubly Excited State VI-A-2 Inner-Shell Excitation of PF₃, PCl₃, PCl₂CF₃, OPF₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s - Excited States of CH₄	2 Ions
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF ₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s - Excited States of CH ₄	d Molecules s at the K-Shell Threshold -135 $3 = 3 = 3$ $3 $
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N₂: Doubly Excited State VI-A-2 Inner-Shell Excitation of PF₃, PCl₃, PCl₂CF₃, OPF₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s Excited States of CH₄ VI-A-5 Renner-Teller Spliting in the 1s → 1πg* Excited States of CVI-A-6 Enhancement of the O1s → nsσg Rydberg Series of CO₂ through the 5σg-Valence Mixing	2 Ions
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF ₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s Excited States of CH ₄	2 Ions
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF ₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s Excited States of CH ₄	2 Ions
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF ₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s Excited States of CH ₄	2 Ions
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF ₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s Excited States of CH ₄	d Molecules es at the K-Shell Threshold t_1 t_2 t_3 t_4 t_5 t_5 t_5 t_5 t_5 t_5 t_6 t_7 t_7 t_8 t_8 t_8 t_8 t_9
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF ₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s Excited States of CH ₄	d Molecules es at the K-Shell Threshold t_1 t_2 t_3 t_4 t_5 t_7
V-Q Ion-Molecule Reactions in the Troposphere V-Q-1 Measurements of Mobility and Mass Spectra of Tropospheric ESEARCH ACTIVITIES VI Department of Vacuum UV Photoscience VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excite VI-A-1 Partial Electron Yield Spectrum of N ₂ : Doubly Excited State VI-A-2 Inner-Shell Excitation of PF ₃ , PCl ₃ , PCl ₂ CF ₃ , OPF ₃ and SPF VI-A-3 The Sulphur 2p Photoabsorption Spectrum of NSF ₃ VI-A-4 Jahn-Teller Effect and Rydberg-Valence Mixing in the C1s Excited States of CH ₄	d Molecules es at the K-Shell Threshold -135 → 3pt ₂ and 3dt ₂ Rydberg

VI-B-2 Ni-Ni Chemical Bond in [Ni ₂ (napy) ₄ Br ₂][B(C ₆ H ₅) ₄]
Studied by Linearly Polarized Ni 2p Photoabsorption13
VI-B-3 Valence Band Excitation Observed in Resonant Soft X-Ray Emission Spectra
of K ₂ Ni(CN) ₄ ·H ₂ O at the Ni 2p Edge13°
VI-B-4 Resonant X-Ray Emission Spectra of K ₂ Ni(CN) ₄ ·H ₂ O at the Ni 1s Edge138
VI-C Generation of Ultrashort Optical Pulse for Time-Resolved Spectroscopy
VI-C-1 Development of UV-Excited Transient Absorption Spectrometer Based on 10-fs Pulses 139
VI-C-2 Generation of Ultra-Short Pulses Using a Krypton Gas-Filled Hollow Fiber139
VI-D Studies of Primary Photochemical/Physical Processes Using Femtosecond Fluorescence
and Absorption Spectroscopy
VI-D-1 Vibronic Relaxation of Polyatomic Molecule in Non-polar Solvent:
Femtosecond Anisotropy/Intensity Measurements of the S _n and S ₁ Fluorescence of Tetracene 140
VI-D-2 Determination of the Excited-State Transition-Moment Directions of 7-Azaindole Dimer
by Femtosecond Fluorescence Anisotropy Measurements142
VI-D-3 Investigation of Excited State Intramolecular Proton Transfer in Anthralin
by Femtosecond Time-Resolved Fluorescence Spectroscopy142
VI-D-4 Relaxation Kinetics of the S _n and S ₁ States of Biphenyl Probed by Femtosecond Fluorescence Anisotropy143
Probed by Femtosecond Fluorescence Anisotropy14;
VI-D-5 Lifetime Measurements of S ₂ Emission from Zinc(II) Porphyrins by the Femtosecond Up-Conversion Method143
by the Femtosecond Up-Conversion Method14:
VI-D-6 Femtosecond Absorption Study on Ultrafast Decay Dynamics
of Photoexcited Cu(II)(TMpy-P4) in Water Solvent144
VI-E Studies of Photochemical Reactions Using Picosecond Time-Resolved Vibrational Spectroscopy
VI-E-1 Picosecond Time-Resolved Raman Study of Trans-Azobenzene145
VI-E-2 Molecular Structure of S ₁ Azobenzene: Vibrational Frequency of the NN Stretch Mode
in the S_1 and S_0 State
VI-E-3 Observation of Resonance Hyper-Raman Scattering of <i>all-trans</i> Retinal140
VI-F Synchrotron Radiation Stimulated Surface Reactions VI-F 1. Vibration Analysis of Sill. Panding Medica on Hydrogenetad Si(100) Synfood
VI-F-1 Vibration Analysis of SiH _n Bending Modes on Hydrogenated Si(100) Surface Using Infrared Reflection Absorption Spectroscopy148
VI-F-2 Scanning Tunneling Microscopy for the Study of the Synchrotron-Radiation Stimulated
Processes; Synchrotron-Radiation Stimulated Desorption of SiO ₂ Films on Si(111) Surface148
VI-F-3 Synchrotron-Radiation Stimulated Desorption of SiO ₂ Thins on Si(111) Surface146
Observed by Scanning Tunneling Microscopy148
VI-F-4 Direct Observation of Synchrotron Radiation Stimulated Desorption of Thin SiO ₂ Films
on Si (111) by Scanning Tunneling Microscopy149
VI-F-5 Scanning Tunneling Microscopy Study of Surface Morphology of Si(111)
after Synchrotron Radiation Illumination149
VI-F-6 Construction of the Multilayered-mirror Monochromator Beam Line for the Study of
Synchrotron Radiation Stimulated Process149
VI-F-7 Excitation Energy Dependence on Composition of an Al Deposited-thin Film
Stimulated by Monochromatized SR150
VI-F-8 SR-stimulated Etching and OMVPE Growth
for Semiconductor Nano-structure Fabrication150
VI-G Ion Desorption Induced by Core-Electron Transitions
Studied by Electron Ion Coincidence Spectroscopy Combined with Synchrotron Radiation
VI-G-1 Study of Ion Desorption Induced by a Resonant Core-Electron Transition
of Condensed H ₂ O by Using Auger Electron Photoion Coincidence (AEPICO) Spectroscopy
Combined with Synchrotron Radiation15
VI-H Photoionization Dynamics Studied by Electron Spectroscopy
Combined with a Continuous Synchrotron Radiation Source
VI-H-1 Autoionization of a Dipole-Forbidden Superexcited State of CS ₂ 152
VI-I Laser Photionization of Polarized Atoms Produced by Excitation with Synchrotron Radiation
VI-I-1 Laser Photoionization Electron Spectroscopy of Polarized Rare Gas Atoms
Excited with Synchrotron Radiation153
VI-I-2 Theoretical Angular Distribution of Photoelectrons from Polarized Ar Atoms153
VI-J Vacuum UV Spectroscopy Making Use of a Combination of Synchrotron Radiation
and a Mode-Locked or Pulsed UV Laser
VI-J-1 Improvement in the Energy Resolution of Laser Induced Fluorescence Excitation
Spectroscopy of Ionic Species Produced by SR Photoexcitation154
VI-J-2 Rotational State Distribution of N ₂ + Produced from N ₂ O154
VI-K Monochromator Newly Developed on the Beam Line BL2B2 in UVSOR
VI-K-1 First Performance Test of the 18 m-Spherical Grating Monochromator155
VI-L Ultraviolet Photoelectron Spectroscopy on Organic Thin Films Using Synchrotron Radiation

	VI-L-1 Origin of Photoemission Intensity Oscillation of C ₆₀	-156
	VI-L-2 Penning Ionization Electron Spectroscopy on Self-Assembled Monolayer	
	of 1-Mercapto-8-Bromooctane on Au(111)VI-L-3 Thickness-Dependent Orientation of the Pendant Phenyl Group	-156
	at the Surface of Polystyrene Thin Films	-156
	VI-L-4 Structure of Copper- and H ₂ -phthalocyanine Thin Films on MoS ₂ Studied by Angle	150
	Resolved Ultraviolet Photoelectron Spectroscopy and Low Energy Electron Diffraction	-156
	VI-L-5 Electronic Structure of Poly(1,10-phenanthroline-3,8-diyl) and Its K-doped State	
	Studied by Photoelectron Spectroscopy	-157
	VI-L-6 A Differential Thermal Analysis and Ultraviolet Photoemission Study on Surface Freezing of n-Alkanes	157
	VI-L-7 Angle-Resolved UPS Studies of Organic Thin Films	-157
VI-M	Thin Film Preparation of SiO ₂ by Photo-Chemical Vapor Deposition	157
	sing Vacuum Ultraviolet Radiation	
	VI-M-1 SiO ₂ Thin Film Preparation Using Dielectric Barrier Discharge-Driven Excimer Lamps	-158
	VI-M-2 SiO ₂ Film Coatings with VUV Excimer Lamp CVD	-158
	VI-M-3 Thin Film Preparation Using Vacuum Ultraviolet Rare Gas Excimer LampsVI-M-4 Photo-Dissociation Process of Tetraethoxyorthosilicate (TEOS)	-158
	Induced by Synchrotron Radiation	-158
VI-N	Vacuum Ultraviolet Lasers and Their Applications to Surface Modification of Silica Glass	150
	VI-N-1 The State of the Art of Rare Gas Excimer Lasers and Lamps as a Light Source	
	for Giga-Bit Lithography	-159
	VI-N-2 Radiation Effects of Vacuum Ultraviolet Lasers on Silica Glasses	-159
	VI-N-3 X-Ray Emission Spectroscopic Studies of Silicon Precipitation	150
	in Surface Layer of SiO ₂ Induced by Argon Excimer Laser Irradiation	-139 -160
VI-O	Photo-Stimulated Luminescence as Data Storage in UV to Vacuum UV Regions	-100
,,,	VI-O-1 Response Characteristics of Imaging Plate in UV Region	-160
VI-P	Nano-Structure Fabrication Using Synchrotron Radiation Stimulated Processing	
0	VI-P-1 Design and Construction of BL-4A2 Beam Line for Nano-Structure Processing	-160
VI-Q	Desorption Induced by Electronic Transitions from Cryogenic Surfaces	
	VI-Q-1 Desorption of Excimers from the Surface of Solid Ne by Low Energy Electron or Photon Impact	162
	VI-Q-2 Photon Stimulated Ion Desorption from Solid Rare Gases in the Core Excitation Region	-162
VI-R	Structure and Vibrational Spectra of Molecules Physisorbed on Metal Surfaces	102
	VI-R-1 Upgraded Infrared Beamline BL6A1 at UVSOR	-162
	VI-R-2 Development of High Sensitivity EELS	-163
VI-S	Structure and Vibrational Spectra of Molecules on Metal Surfaces	1.02
	VI-S-1 Adsorption Structures of NO on Pt(111) Investigated by Scanning Tunneling Microscopy VI-S-2 Dynamical LEED Analyses of the Pt(111)-p(2×2)-NO Structures	/ 103 163
VI-T	Ultraviolet, Visible and Infrared Spectroscopy of Solids	-103
,	VI-T-1 Reconstruction of BL7B for UV, VIS and IR Spectroscopy	
	with a 3 m Normal-Incidence Monochromator	
	VI-T-2 Absorption and Luminescence Spectra of Amorphous CdI ₂ Thin Films	-164
VI II	VI-T-3 Optical Study of the Metal-Nonmetal Transition in $Ni_{1-\delta}S$	
V1-U	VI-U-1 Soft X-ray Absorption Study of III-V Nitrides	164
VI-V	Site-Specific Fragmentation Following Core-Level Photoexcitation	101
	VI-V-1 Site-Specific Phenomena in Si:2p Core-Level Photoionization of X ₃ Si(CH ₂) _n Si(CH ₃) ₃	
	(X = F or Cl, n = 0-2) Condensed on a Si(111) Surface	-166
	VI-V-2 Ion Desortpion Induced by Core-Electron Transitions	1.00
	Studied with Electron-Ion Coincidence Spectroscopy	-166
	VI-V-3 Development of Electron-Ion Coincidence Spectroscopy for Study of Surface and Vapor-Phase Dynamics	-166
VI-W	Study on RF-Photocathode for Compact X-Ray Sources	100
	VI-W-1 Measurement of Quantum Efficiency of Cesium Telluride as a Photocathode	-167
KESEAI	RCH ACTIVITIES VII	109
Coord	ination Chemistry Laboratories	
VII-A	New Insight into Mechanism of Oxygen Activation in Biological Oxygenases	
,	VII-A-1 Important Role of Substrate in Activation of Dioxygen in Biological Oxygenases	
	VII-A-2 Structural Variety of Copper(II)-Peroxide Adducts and its Relevance to DNA Cleavage	

VII-A-3 Mechanism of DNA Cleavage due to Green Cobalt(III)-Bleomycin Hydroperoxide	
Irradiated by Visible Light1	70
VII-A-4 Selective Dioxygenation of Cyclohexane Catalyzed by Hydrogen Peroxide and Dinuclear Iron(III) Complexes with μ-Alkoxo Bridge1	70
VII-A-5 Interaction between the Peroxide Ion and Acetate Moiety of the Ligand System	70
in a Cobalt(II) Complex with a Binucleating Ligand1	71
VII-A-6 Electrospray Mass Spectrometry of Peroxide Adduct of Monomeric Fe(III) Complex	
Containing Phenol Group1	71
VII-A-7 High Activity of Binuclear Cobalt(II) Complex for Ethylene Evolution	
from 1-Aminocyclopropane-1-carboxylic Acid in the presence of Hydrogen Peroxide1	72
VII-A-8 Oxygenation of Nucleosides by Peroxide Adduct of Binuclear Iron(III) Complex with a μ-Oxo Bridge1	72
VII-B Electronic Structure and Reactivity of Metal Cluster Complexes	12
VII-B-1 Synthesis, Structure and Redox Behavior of Tricobalt Cluster	
with Capping Benzylidyne and Bridging halogen $[Co_3Cp_3(\mu_3-CPh)_2(\mu-X)]^+$ (X = Cl, Br, I)1	73
VII-B-2 Bis-µ ₃ -Benzylidyne Tri(cyclopentadienylcobalt) Cluster with Edge-bridging Silver(I):	
Synthesis, Structure and Solution Properties of $[Co_3Cp_3(\mu_3-CPh)_2\{\mu-Ag(X)\}]$	
$(X = CF_3CO_2, NO_3) \text{ and } [Co_3Cp_3(\mu_3-CPh)_2\{\mu-Ag(NCCH_3)\}]PF_6 1$	73
VII-C Bio-Inspired Molecular Architecture VII-C-1 Synthesis of a Novel Nucleoside for Alternative DNA Base Pairing	
through Metal Complexation1	75
VII-C-2 An Approach to Metal-Assisted DNA Base Pairing: Novel β-C-Nucleosides	13
with a 2-Aminophenol or a Catechol as the Nucleobase1	75
VII-C-3 Cyclic Metallopeptides, cyclo[-Gly-L-Cys(terpyPt ^{II})-] _n Cl _n 1	76
VII C A Construction of a Uniona Alternation Chain Amora with ConsequII)	
and a New Diazamesocycle Bearing One Functional Pendant	76
VII-C-5 Spontaneously Resolved Chiral Molecular Box: A Cyclic Tetranuclear Zn(II) Complex with DPTZ (DPTZ = 3,6-Di-2-Pyridyl-1,2,4,5-Tetrazine)1	76
VII-D Research on the Relationship between Structure of Vanadyl Complex	70
and Insulin-Mimetic Activity	
VII-D-1 Syntheses, Structure, and Insulin-like Activities of Oxovanadium (IV) Complexes	
with Tetra- and Penta-Dentate Histidine Derivatives1	77
	. ,
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes1	77
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes1 VII-D-3 A New Insulin-mimetic Vanadyl Complex, (<i>N</i> -Pyridylmethylaspartate) Oxovanadium (IV	77
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes1 VII-D-3 A New Insulin-mimetic Vanadyl Complex, (N-Pyridylmethylaspartate) Oxovanadium (IV with VO(N ₂ O ₂) Coordination Mode, and Evaluation of its Effect on Uptake of D-Glucose	.77 ()
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes1 VII-D-3 A New Insulin-mimetic Vanadyl Complex, (<i>N</i> -Pyridylmethylaspartate) Oxovanadium (IV	.77 ()
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77
 VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77
 VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77 .78
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77 .78
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77 .78
 VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77 .78 .78
 VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77 .78 .78
 VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77 .78 .78
 VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.77 () .77 .78 .78 .79
 VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.777 .78 .78 .78 .79 .79 .80
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.777 .78 .78 .78 .79 .79
 VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.777 .78 .78 .78 .79 [80
 VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.777 .78 .78 .78 .79 [80
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.777 .78 .78 .78 .79 .80 .80
 VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes VII-D-3 A New Insulin-mimetic Vanadyl Complex, (N-Pyridylmethylaspartate) Oxovanadium (IV with VO(N₂O₂) Coordination Mode, and Evaluation of its Effect on Uptake of D-Glucose by Ehrlich Ascites Tumor Cells VII-E Syntheses of Transition Metal-Sulfur Clusters and Development of Their Catalysis VII-E-1 Syntheses and Structures of Mixed-Metal Sulfido Clusters Containing Incomplete Cubane-Type M₂M' S₄ and Cubane-Type M₂M' 2S₄ Cores (M = Mo, W; M' = Rh, Ir) VII-E-2 Synthesis and Reactivities of Ir₂Ru Heterobimetallic Sulfido Clusters Derived from a Hydrogensulfido-Bridged Diiridium Complex VII-E-3 Formation of Linear Tetradentate Phosphine Ligand o-C₆H₄(PPhCH₂CH₂PPh₂)₂ by Coupling of Two Diphosphine Ligands Bound to Low-Valent Mo or W Center. Synthesis and Structure of [M{o-C₆H₄(PPhCH₂CH₂PPh₂)₂}(Ph₂PCH₂CH₂PPh₂)] (M = Mo, W) VII-F Activation of Carbon Dioxide and Creation of Reactive Hydroxy- and Oxo-metal Complexes through Activation of Water Molecules on Metals VII-F-1 Stabilization of [Ru(bpy)₂(CO)(η¹-CO₂)] and Unprecedented Reversible Oxide Transfer Reactions from CO₃²⁻ to [Ru(bpy)₂(CO)(η¹-CO₂)] and from [Ru(bpy)₂(CO)(η¹-CO₂)] to CO₂1 VII-F-3 First Artificial Energy Conversion from Proton Gradient to Electricity VII-F-3 Two-Electron Reduction of [{(bpy)₂Ru(dmbbbpy)₃Ru]⁸⁺ from (BNA)₂ via Photoinduced Electron Transfer [dmbbbpy = 2,2'-Bis(N-Methylbenzimidazole-2-yl)-4,4'-bipyridine] VII-F-4 Selective Production of Acetone in Electrochemical Reduction of CO₂ Catalyzed by Ru-naphthyridine Complex VII-F-5 Basicity of μ₃-X and η¹-Y Ligands (X, Y = S, Se) of Reduced, Oxidized and Super-Oxidized Forms of [Fe₄X₄(YAd)₄]²⁻ (Ad = 1-Adamantane) in Aqueous Solutions1 VII-F-6 Double Addition	.777 .78 .78 .78 .79 .80 .80
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.777 .78 .78 .78 .79 .79 .80 .80
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.777 .78 .78 .78 .79 .79 .80 .80
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes ———————————————————————————————————	.777 .778 .78 .78 .79 .79 .80 .80 .81
VII-D-2 Insulin-Mimetic Vanadyl-Dithiocarbamate Complexes	.777 .78 .78 .78 .79 .79 .80 .80 .81 .82

	VII-G-4 Spontaneous Assembly of Ten Components	
	into a Two Interlocked, Identical Coordination Cages	182
	VII-G-5 Quantitative Formation of Coordination Nanotubes Templated by Rod-like Guests	183
	VII-G-6 Guest-Selected Formation of Pd(II)-Linked Cages from a Prototypical Dynamic Library	183
	VII-G-7 Quantitative and Spontaneous Formation of a Doubly Interlocking [2] Catenane	
	using Copper(I) and Palladium(II) as Templating and Assembling Centers	184
	VII-G-8 Flexible Coordination Networks with Fluorinated Backbones. Remarkable Ability	
	for Made-to-Order Enclathration of Organic Molecules	184
	VII-G-9 Kinetic and Thermodynamic Aspects in the Substrate-Induced Assembly	
	VII-G-9 Kinetic and Thermodynamic Aspects in the Substrate-Induced Assembly of Optimal Receptors from a Dynamic Library	184
	VII-G-10 Dynamic Behavior of Rod-like Guest Accomodated in Coordination Nanotubes	184
	VII-G-11 Wacher Oxidation in an Aqueous Phase	
	Through the Reversed Phase-Transfer Catalysis of a Self-Assembled Nanocage	185
	VII-G-12 Hydrophobic Assembling of a Coordination Nanobowl into a Dimeric Capsule	
	Which can Accommodate upto Six Large Organic Molecules	185
	VII-G-13 Porous Coordination Polytubes	185
	VII-G-14 X-Ray And NMR Observation of Encapsulated Molecules	
	VII-G-14 X-Ray And NMR Observation of Encapsulated Molecules in a Self-Assembled Coordination Nanocage	186
VII-H	Synthesis and Reactivity of Complexes Containing Peculiar Bonds	
	tween Transition Elements and Main Group Elements	
	VII-H-1 Fluxional Behavior of Alkoxy-Bridged Bis(silylene)ruthenium Complexes	
	$\operatorname{Cp*}(\operatorname{Me_3P})\operatorname{Ru}\{\operatorname{SiMe_2\cdots O}(\operatorname{R})\operatorname{\cdots}\operatorname{SiMe_2}\}\ (\operatorname{R}=\operatorname{Me},{}^t\operatorname{Bu})$	
	Caused by Rotation of the Silylene Ligands	187
	VII-H-2 Preparation of Silanediyl-Bridged Fe-Fe and Fe-W Dinuclear Complexes.	10,
	V. Dov. Standards of [Cn*Ec(CO)(i, CO)(i, Ci/H)CHDh)(CO) MCn.	
	A -Ray Structures of [Cp*Fe(CO)(µ-CO){µ-Si(H)CHPh ₂ }(CO) _n NiCp] (Cp* = C ₅ Me ₅ , Cp = C ₅ H ₅ , M = Fe, n = 1; M = W, n = 2)	187
	VII-H-3 Extremely Facile Arene Exchange on a Ruthenium(II) Complex Having a Novel	10,
	Bis(silyl) Chelate Ligand (9,9-Dimethylxanthene-4,5-diyl)bis(dimethylsilyl) (Xantsil)	188
	Dis(on) 1) energies Eigens (5,5 2 intern) manufactor 1,6 or 1,70 is (on the on) 15 in 1,7 (1 intern)	100
	VII-H-4 Synthesis and Structures of Heterometallic Trinuclear Clusters	
	VII-H-4 Synthesis and Structures of Heterometallic Trinuclear Clusters [CpFe(CO) ₂] ₂ (u ₂ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (u-CO)(u ₃ -S)W(CO) ₅ and Kinetic Study	
	$[CpFe(CO)_2]_2(\mu_3-S_2)W(CO)_5$ and $Cp_2Fe_2(CO)_2(\mu-CO)(\mu_3-S)W(CO)_5$ and Kinetic Study	188
	$[CpFe(CO)_2]_2(\mu_3-S_2)W(CO)_5 \ and \ Cp_2Fe_2(CO)_2(\mu-CO)(\mu_3-S)W(CO)_5 \ and \ Kinetic \ Study \ of \ Migration \ of the \ W(CO)_5 \ Moiety \ in the \ Disulfido \ Complex \$	
RESEAR	$[CpFe(CO)_2]_2(\mu_3-S_2)W(CO)_5 \ and \ Cp_2Fe_2(CO)_2(\mu-CO)(\mu_3-S)W(CO)_5 \ and \ Kinetic \ Study \ of \ Migration \ of the \ W(CO)_5 \ Moiety \ in the \ Disulfido \ Complex \$	
	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	
	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	
Comp	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	.89
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	.89
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	. 89
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	. 89
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	. 89
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	.189 .189
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	.189 .189
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	. 89 .189 .189
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	. 89 -189 -189
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	.189 .189 .189 .189
Compi VIII-A	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	189 189 189 189 190 190
Compi VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	189 189 189 189 190 190
Compi VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	189 189 189 189 190 190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	189 189 189 189 190 190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	189 189 189 189 190 190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex **CCH ACTIVITIES VIII	189 189 189 189 190 190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	189 189 189 190 190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	189 189 189 190 190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	.189 .189 .189 .190 .190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex	189 189 189 190 190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex **CCH ACTIVITIES VIII	189 189 189 190 190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex **CCH ACTIVITIES VIII	189 189 189 190 190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex **CCH ACTIVITIES VIII	189 189 189 190 190
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex **CCH ACTIVITES VIII	189 189 189 190 190 191 191 192
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex **CCH ACTIVITIES VIII	189 189 189 190 190 190 191 191
Compo VIII-A in	[CpFe(CO) ₂] ₂ (μ ₃ -S ₂)W(CO) ₅ and Cp ₂ Fe ₂ (CO) ₂ (μ-CO)(μ ₃ -S)W(CO) ₅ and Kinetic Study of Migration of the W(CO) ₅ Moiety in the Disulfido Complex **CCH ACTIVITES VIII	189 189 189 189 190 191 191 192

VIII-C-5 LiCAF Crystal as a New Vacuum Ultraviolet Optical Material with Transmission	
down to 112 nm	193
VIII-D Development and Research of Advanced Tunable Solid State Lasers	
VIII-D-1 Frequency-Doubled Tunable Yb:YAG Microchip Laser	
for Holographic Volume Memories	195
VIII-D-2 Design Criteria for Optimization of Fiber-Coupled Diode Longitudinally-Pumped L	aser
Using Pump-beam M ₂ Factor	195
VIII-D-3 Highly Nd ³⁺ -Doped YAG Ceramic for Microchip Lasers	
VIII-D-4 Nondestructive Characterization of Quasi-Phase-Matched Wavelength Converter	196
Research Center for Molecular Materials	
VIII-E Development of Novel Heterocyclic Compounds and their Molecular Assemblies	
for Advanced Materials	
VIII-E-1 Cation Radical Salts of TTF Vinylogues with Au(CN) ₂ Anion	197
VIII-E-2 Control of Packing Mode in Crystals of Cation Radical Salts of TTF Vinylogues	197
VIII-E-3 Non-Planar BEDT-TTF Derivatives Fused with Tetrahydrofuran Rings	
Affording Cation Radical Salts with Unusual Structures	198
VIII-E-4 Bithiophene-TCNQ Analogue with Fused 1,2,5-Thiadiazole Rings	198
VIII-E-5 First Stable Tetracyanodiphenoquinodimethane with a Completely Planar Geometry	:
Preparation, X-Ray Structure, and Highly Conductive Complexes	
of Bis[1,2,5]thiadiazolo-TCNDQ	199
VIII-E-6 Novel Supramolecular Synthon in Crystal Engineering: Ionic Complexes of 4,4'-Bi	yridine
and 1,2-Bis(2-pyridyl)ethylene with 2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone	199
VIII-E-7 Design and Synthesis of Soluble Linear Macromolecules	
with Highly Extended π -Conjugated Backbone	200
VIII-F Electronic Structures and Rectivities of Active Sites of Metalloproteins	
VIII-F-1 High-Spin (meso-Tetraalkylporphyrinato)iron(III) Complexes As Studied	
by X-ray Crystallography, EPR, and Dynamic NMR Spectroscopies	201
VIII-F-2 Insensitivity of Vanadyl-Oxygen Bond Strengths to Radical Type (${}^{2}A_{1u}$ vs. ${}^{2}A_{2u}$)	
in Vanadyl Porphyrin Cation Radicals	201
VIII-F-3 Electron Configuration of Ferric Ions	
in Low-Spin (Dicyano)(meso-tetraarylporphyrinato)iron(III) Complexes	201
VIII-F-4 Resonance Raman Spectra of Legitimate Models for the Ubiquitous Compound I	
Intermediates of Oxidative heme Enzymes	202
VIII-F-5 Newly Designed Iron-Schiff Base Complexes as Models	
of Mononuclear Non-Heme Iron Active Sites	202
VIII-F-6 ¹⁷ O-NMR Study of Oxygen Molecules Bound to Copper Ions of Mononucler	
and Dineucler Copper Complexes	202
VIII-G Molecular Mechanism of Heme Degradation and Oxygen Activation by Heme Oxygena	ise
VIII-G-1 Molecular Oxygen Oxidizes the Porphyrin Ring of the Ferric α-Hydroxyheme	202
in Heme Oxygenase in the Absence of Reducing Equivalent	203
VIII-H Designing Artificial Photosynthesis at Molecular Dimensions	20.4
VIII-H-1 Synthesis and Characterization of Manganese Complexes	204
VIII-H-2 Synthesis and Photochemical Reaction of Porphyrin/Cobalt-complex Dyad Molecul	es -204
VIII-I Development of New Metal Complexes as Redox Catalysts	205
VIII-I-1 Synthesis of Terpyridine-catechol Linked Ligands and Their Cobalt(III) Complexes	203
VIII-J Organic Molecular Materials with Novel Electronic Properties	206
VIII-J-1 Synthesis and Electron-Transporting Properties of Perfluorinated Decaphenylenes	200
VIII-K The Effects of the 2D Spin-Echo NMR Pulse Sequence on Homonuclear Spin Systems	
VIII-K-1 Novel Satellites in a Two-Dimensional Spin-Echo NMR Spectrum for a Homonuclear Spin-1/2 Pair in Rotating Solids	207
101 a Homonacical Spin-1/2 I all in Rotating Solids	207
Equipment Development Center	
VIII-L Development of "IMS Machines"	
VIII-L-1 Surface Profiler of Mirrors for High-Resolution Monochromator	208
VIII-L-2 Preparation and Transfer System for Ice-Embedding Sample	209
VIII-M Development of New Laser Materials	
VIII-M-1 Amplification of Impurity-Associated Auger-Free Luminescence in Mixed Rubidiu	m-
Caesium Chloride Crystals under Core-Level Excitation with Undulator Radiation	
•	
Ultraviolet Synchrotron Orbital Radiation Facility	
VIII-N Development of the UVSOR Light Source	
VIII-N-1 Influence of Electron Beam Properties on Spontaneous Radiation	
from an Optical Klystron	210

VIII-O Researches by the USE of UVSOR VIII-O-1 Nano-Second Desorption of Alkali Fluorides Excited by Synchrotron Radiation Puls	os 210
VIII-O-1 Nano-Second Description of Alkan Fluorides Excited by Synchrotron Radiation Puls VIII-O-2 Photo-Induced Change in Semiconductor-Vacuum Interface of p-GaAs(100) Studied by Photoelectron Spectroscopy	
VIII-O-3 Electronic Structures of Organic Salts DMTSA-BF ₄ Using Photoelectron Spectromicroscopy	
VIII-O-4 Photoemission Study of Si(111) Clean Surfaces at High Temperature Using Laser Annealing	
VIII-O-5 Behavior of the "6eV Satellite" in Ni Thin Film Observed by Valence Band Photoemission	
VIII-O-6 Magnetic Stability of Co-Film Grown on Oxygen-Rich Cu(001) Surface	211
VIII-O-7 Thickness Dependent Oxidization of Co Films	
and Observation of Different CoO Phases	213
VIII-O-8 Satellite Structure Observed in 2 <i>p</i> XPS of Co Thin Film	213 214
VIII-O-10 Photodissociation of Ozone in the K-Edge Region	214
VIII-O-11 Infrared Magnetic Circular Dichroism of Strongly Correlated 4f Electron Systems with Synchrotron Radiation	
VIII-O-12 Optical Conductivity of the Kondo Insulator YbB ₁₂ :	
Gap Formation and Low-Energy Excitations	215
RESEARCH FACILITIES	217
Computer Center	217
Laser Research Center for Molecular Science	217
Research Center for Molecular Materials	
Equipment Development Center	217
Oltraviolet Synchrotron Orbital Radiation Facility	218
SPECIAL RESEARCH PROJECTS	221
(1) Development of Microscopic Environments with Functionality and Quantum Steering for	
Reactions Structures Possitions and Sportmanning of Malandan and Charters	221
Structures, Reactions and Spectroscopies of Molecules and ClustersFolding Mechanism of Protein Molecules Studied by Generalized-Ensemble Algorithms	221
Studies of Nonadiabatic Transitions, Chemical Reaction Dynamics, and Their Control	221
The 5th- and 7th-order 2D Raman Spectroscopy for Intramolecular Vibrational Modes	222
Constructing Molecular Theory of Chemical Process in Solution	222
(1) Studies on Laser Cooling and Trapping of Neutral Atoms	222
(2) Laser Spectroscopic Studies of Atoms and Ions in Liquid Helium	222
by Cytochrome c Oxidase	222
Laser Raman Beat Detection of Magnetic Resonance	223
Environment Dependent Association of Acetic Acid in Liquid Phase	223
Higher Vibrational States of Molecules and Clusters as Studied by Nonresonant Ionization	222
Detected IR Spectroscopy Imaging of Chemical Dynamics	223 224
Theoretical Study on the Electronic Structures of Atoms, Molecules, and Clusters	
Supersonic Jet Submillimeter-Wave Absorption Spectrometer with Backward Wave Oscillator	224
Experimental Study of Ion-Induced Nucleation	225
Time-Resolved Spectroscopic Study of Photochemical Dynamics in Condensed Phase	225
SR-Pump and Laser-Probe Experiments for the Photofragmentation Dynamics of Atoms and Molecules	225
Vibrational Spectroscopy on Cryogenic Surfaces Using Synchrotron Radiation	
Similarity Transformed Preconditioners for Green Function Evaluation	
in Cumulative Reaction Probability Calculations	
Developments of Advanced Lasers for Chemical Reaction Controls	226
Developments and Researches of New Laser Materials Development and Research of Advanced Tunable Solid State Lasers	226 227
UHV Tribometer	22 <i>1</i> 227
Investigation of Dynamics on photo-excited Solids and Surfaces by Using Synchrotron Radiati	
Non-Linear Phenomena and Related Beam Physics in Storage Ring Free Electron Lasers	227
Photoelectron Spectroscopy Studies of Solids, Surfaces and Interfaces	228
(2) Study of Molecular Solid toward Molecular Electronics Theory of Electronic Phases in Molecular Conductors and Insulators: Electron Correlations	
and Dimensional Crossovers	229

π -d Interaction in Molecular Metals	
Search for Negative-U Materials in Molecular Solid	229
Investigation of Novel Electronic Phases in Molecular-Based Conductors	230
Development and Solid State Properties of New Organic Conductors	230
NMR Studies of Liquid Crystals	230
Construction and Characterization of Chiral Molecule-Based Magnets in a Systematic Way	231
Studies on Electronic States of Organic Thin Films by Angle-Resolved UPS	
New Advanced Organic Materials Based on Novel Heterocyclic Compounds	232
Design and Synthesis of New Tellurium-Containing Donors	232
(3) Material Control in Multi-Reaction Centers	
Asymmetric Oxidation Catalyzed by Myoglobin Mutants	233
Bio-Inspired Molecular Architecture	233
Activation of Carbon Dioxide Directed Toward Carbon-Carbon Bond Formation	
and Energy Conversion from Proton Gradients to Electricity	233
Self-Assembling Molecular Systems	234
Molecular Mechanism of Oxygen Activation by Metalloenzymes	235
Generation of Reactive Species via Electron Transfer on Metal Complexes,	
as Basis of Chemical Energy Conversion Systems	235
OKAZAKI CONFERENCES	237
(1) Special Projects (2) Research Symposia (3) Cooperative Research (4) Use of Facility (5) UVSOR	241
FOREIGN SCHOLARS	245
AWARDS	249
LIST OF PUBLICATIONS	251
REVIEW ARTICLES AND TEXTBOOKS	269
AUTHOR INDEX	273

Abbrevations

IMS: Institute for Molecular Science GUAS: The Graduate University for Advanced Studies