VII-B Electronic Structure and Reactivity of Metal Cluster Complexes

Because trimetal cluster complex is a fundamental framework for constructing high nuclearity cluster, electronic structure and reactivity of trimetal cluster complex is important. We have studied the electronic structure and reactivity of bis(μ_3 -benzylidyne)tris(cyclopentadienylcobalt) complex. It reacts halogens and silver(I) to give halide and silver bridged complexes.

VII-B-1 Synthesis, Structure and Redox Behavior of Tricobalt Cluster with Capping Benzylidyne and Bridging halogen $[Co_3Cp_3(\mu_3-CPh)_2(\mu-X)]^+$ (X = Cl, Br, I)

EBIHARA, Masahiro; IIBA, Masami¹; MATSUOKA, Hiroaki¹; KAWAMURA, Takashi¹ (¹Gifu Univ.)

Reactions of the benzylidyne capped tricobalt cluster $[Co_3Cp_3(\mu_3-CPh)_2]$ (1) with halogens (X₂ = Cl₂, Br₂, I₂) in CH₂Cl₂ gave oxidative addition products of halogen to 1. X-ray structures of four salts, $[Co_3Cp_3(\mu_3-CPh)_2(\mu-$ Cl)]PF₆·CH₃CN (2^+ PF₆^{-·}CH₃CN), [Co₃Cp₃(μ_3 -CPh)₂(μ_- Br)]SbF₆ (**3**⁺SbF₆⁻), [Co₃Cp₃(µ₃-CPh)₂(µ-I)]SbF₆·CH₂- Cl_2 (4+SbF₆-·CH₂Cl₂) and [Co₃Cp₃(µ₃-CPh)₂(µ-I)]I₃ $(4^+I_3^-)$ were determined. In all structures the halogen atom was in the Co₃ plane. The halogen-bridged Co-Co distance was elongated ($2^+PF_6^-CH_3CN$: 2.6072(5) Å, **3**⁺SbF₆⁻: 2.6097(9) Å, **4**⁺SbF₆⁻·CH₂Cl₂: 2.621(2) Å) and the Co-Co distances without halogen-bridge remained unchanged (2+PF₆-: 2.4038(9) and 2.3947(7) Å, **3**⁺SbF₆⁻: 2.3902(8) and 2.4015(9) Å, **4**⁺SbF₆⁻·CH₂-Cl₂: 2.392(2) and 2.388(2) Å) from that of **1** (2.38 Å). Cyclic voltammogram of $2^+PF_6^-$ in CH₂Cl₂ with 0.1 M *n*-Bu₄NPF₆ as supporting electrolyte showed an quasireversible oxidation (+0.75 V, potential vs Fc/Fc⁺) and an irreversible reduction wave (-0.57 V) (Figure 1). The irreversible reduction caused recovery of neutral cluster complex 1. The redox properties of 3^+ and 4^+ were similar to that of 2^+ . Cyclic voltammetry of 1 in 0.1 M n-Bu₄NCl/CH₃CN with various scan rates indicated that the formation of 2^+ was a multi-step reaction. First 1 was oxidized to 1^+ and it was coordinated by Cl⁻ and immediately oxidized to 2^+ .

Figure 1. Cyclic voltammograms of **1** (2.0 mM) in CH₃CN with 0.1 M *n*-Bu₄NCl. Scan rate (a) 10 mVs⁻¹, (b) 100 mVs⁻¹ and (c) 500 mVs⁻¹ with cyclic voltammograms of **1** (2.0 mM) in 0.1 M *n*-Bu₄NPF₆ (broken line).

VII-B-2 Bis- μ_3 -Benzylidyne Tri(cyclopentadienylcobalt) Cluster with Edge-bridging Silver(I): Synthesis, Structure and Solution Properties of [Co₃Cp₃(μ_3 -CPh)₂{ μ -Ag(X)}] (X = CF₃CO₂, NO₃) and [Co₃Cp₃(μ_3 -CPh)₂{ μ -Ag-(NCCH₃)}]PF₆

EBIHARA, Masahiro; IIBA, Masami¹; MATSUOKA, Hiroaki¹; KAWAMURA, Takashi¹ (¹Gifu Univ.)

Reactions of the benzylidyne capped tricobalt cluster $[Co_3Cp_3(\mu_3-CPh)_2]$ (1) with various silver salts are examined. The salts of weakly- or non-coordinating anions (BF_4^-, PF_6^-) oxidize 1 to its cationic radical $[Co_3Cp_3(\mu_3-CPh)_2]^+$ (1⁺) in CH₂Cl₂. The reaction with the salts of strongly-coordinating anions $(CF_3CO_2^-, NO_3^-)$ gives silver(I) adducts of 1, $[Co_3Cp_3(\mu_3-CPh)_2-\{\mu-Ag(X)\}]$ (X = CF₃CO₂⁻ (2, Figure 1), NO₃⁻ (3)). Even for AgBF₄ or AgPF₆ the reaction in CH₃CN produces silver(I) adduct $[Co_3Cp_3(\mu_3-CPh)_2\{\mu-Ag(NC_3^-)]^+$

CH₃)]⁺ (4⁺). The Co₃Ag skeleton in structures of **2**, **3** and **4**⁺ resembles each other. The Co–Co bonds bridged by the Ag atom (**2**: 2.4783(9) Å, **3**: 2.481(1) Å, **4**⁺: 2.4600(9) Å) are longer than that of **1** (2.38 Å). The other Co–Co bonds are slightly shorter than that in **1**. The Co₂Ag triangle is not coplanar with the Co₃ triangle; the dihedral angles between these triangles for **2**, **3**, and **4**⁺ are 162.7°, 157.8°, and 151.3°, respectively. Dissolution of **4**⁺PF₆⁻ in CH₂Cl₂ causes formation of **1**⁺ with deposition of Ag metal. ¹H NMR spectra of **2** and **3** in CD₂Cl₂ indicates partial dissociation of the AgX group. The ¹H NMR spectra of CD₃CN solutions and the ESR spectra in frozen CH₃CN solutions of **2**, **3**, and **4**⁺PF₆⁻ shows generation of **1**⁺ without deposition of Ag metal. It suggests that equilibrium of Ag⁺ and **1** with Ag⁰ and **1**⁺ is established in acetonitrile. Addition of AgO₂CCF₃ to the solution causes disappearance of the ESR signal. It indicates that **1**⁺ is generated from **4**⁺ or the reaction of **1** with anion-uncoordinated Ag⁺.

Figure 1. Structure of $[Co_3Cp_3(\mu_3-CPh)_2\{\mu-Ag(O_2CCF_3)\}]$.