VII-E Syntheses of Transition Metal-Sulfur Clusters and Development of Their Catalysis

This project focuses on the development of the new, reliable synthetic routes towards the transition metal-sulfur clusters with the tailored core structures in high yield, and also on the determination of the detailed structures of the novel clusters prepared in this study by the X-ray crystallography. Activation of the small molecules will be attempted by the use of polynuclear homo- or heterometallic site in these clusters to exploit the new catalytic reactions that are inaccessible by the mononuclear complex catalyst.

VII-E-1 Syntheses and Structures of Mixed-Metal Sulfido Clusters Containing Incomplete Cubane-Type M₂M'S₄ and Cubane-Type M₂M'₂-S₄ Cores (M = Mo, W; M' = Rh, Ir)

IKADA, Tomotake¹; KUWATA, Shigeki¹; MIZOBE, Yasushi²; HIDAI, Masanobu¹

(¹Univ. Tokyo; ²Univ. Tokyo and IMS)

[Inorg. Chem. 38, 64 (1999)]

The reactions of sulfido-bridged dimolybdenum and ditungsten complexes $[M_2S_2(\mu\text{-}S)_2(S_2\text{CNEt}_2)_2]$ (1; M = Mo, W) with an equimolar amount of $[M'\text{Cl}(PPh_3)_3]$ (M' = Rh, Ir) gave a series of mixed-metal incomplete cubane-type sulfido clusters $[M'(PPh_3)_2(\mu_3\text{-}S)(\mu_2\text{-}S)_3\text{-}\{M(S_2\text{CNEt}_2)\}_2(\mu_2\text{-}\text{Cl})].$ On the other hand, mixed-metal cubane-type sulfido clusters $[\{M'(\text{cod})\}_2\{M\text{Cl}(S_2\text{CNEt}_2)\}_2(\mu_3\text{-}S)_4]$ (M' = Rh, Ir; cod = 1,5-cyclo-octadiene) were obtained by the reactions of 1 with an equimolar amount of $[M'\text{Cl}(\text{cod})]_2$. Detailed structures of $[Ir(PPh_3)_2(\mu_3\text{-}S)(\mu_2\text{-}S)_3\{W(S_2\text{CNEt}_2)\}_2(\mu_2\text{-}\text{Cl})]$ and $[\{Rh(\text{cod})\}_2\{M\text{OCl}(S_2\text{CNEt}_2)\}_2(\mu_3\text{-}S)_4]$ have been determined by X-ray crystallography.

VII-E-2 Synthesis and Reactivities of Ir₂Ru Heterobimetallic Sulfido Clusters Derived from a Hydrogensulfido-Bridged Diiridium Complex

KOCHI, Takuya¹; NOMURA, Yasuo¹; TANG, Zhen¹; ISHII, Youichi¹; MIZOBE, Yasushi²; HIDAI, Masanobu¹

(¹Univ. Tokyo; ²Univ. Tokyo and IMS)

[J. Chem. Soc., Dalton Trans. 2575 (1999)]

The hydrogensulfido-bridged diiridium complex $[ClCp*Ir(\mu-SH)_2IrCp*Cl]$ reacted with $[RuH_2(PPh_3)_4]$ to give a mixed-metal trinuclear cluster $[(Cp*Ir)_2(\mu_3-S)_2RuCl_2(PPh_3)]$ 1. which was further converted into the cationic diphosphine derivatives $[(Cp*Ir)_2(\mu_3-S)_2-RuCl(L)]Cl$ (L = dppe = $Ph_2PCH_2CH_2PPh_2$ 2 or depe = $Et_2PCH_2CH_2PEt_2$ 3). The reaction of 2 with Me_2CuLi followed by anion metathesis with KPF_6 afforded the methyl cluster $[(Cp*Ir)_2(\mu_3-S)_2RuMe(dppe)][PF_6]$, while treatment of 2 with $CHCl_2Li$ led to formation of

[(Cp*Ir){ η^4 -C₅Me₅CHCl₂)Ir}(μ_3 -S)₂RuCl(dppe)], in which one of the Cp* ligands was alkylated by CHCl₂Li to form an η^4 -diene. Clusters **2** and **3** were also transformed into the dihydrido clusters [(Cp*Ir)₂(μ_3 -S)₂-(μ -H)₂Ru(L)] (L = dppe or depe) by the reaction with NaBH₄. On the other hand, **1** was converted into the carbonyl cluster [(Cp*Ir)₂(μ_3 -S)₂RuCl(CO)(PPh₃)]Cl, the isocyanide clusters [(Cp*Ir)₂(μ_3 -S)₂RuCl(CNXy)-(PPh₃)]Cl (Xy = 2,6-C₆H₃Me₂) and [(Cp*Ir)₂(μ_3 -S)₂RuCl(CNXy)₂(PPh₃)][BPh₄]₂ and the co-ordinatively unsaturated thiolato clusters [(Cp*Ir)₂(μ_3 -S)₂Ru(SAr)₂] (Ar = 2,4,6-C₆H₂Prⁱ₃ **12** or Xy) on treatment with CO, XyNC and LiSAr, respectively.

VII-E-3 Formation of Linear Tetradentate Phosphine Ligand o- $C_6H_4(PPhCH_2CH_2PPh_2)_2$ by Coupling of Two Diphosphine Ligands Bound to Low-Valent Mo or W Center. Synthesis and Structure of [M{o- $C_6H_4(PPhCH_2CH_2PPh_2)_2$ }- $(Ph_2PCH_2CH_2PPh_2)$] (M = Mo, W)

ARITA, Chirima¹; SEINO, Hidetake¹; MIZOBE, Yasushi²; HIDAI, Masanobu¹

(¹Univ. Tokyo; ²Univ. Tokyo and IMS)

[Chem. Lett. 611 (1999)]

A mixture of trans-[M(N₂)₂(dppe)₂] (M = Mo or W; dppe = Ph₂PCH₂CH₂PPh₂) and dppe was heated to reflux in benzene or toluene to give the M(0) complex [M(**P**₄)(dppe)], which contains the novel tetradentate phosphine o-C₆H₄(PPhCH₂CH₂PPh₂)₂ (**P**₄) arising from the coupling of two dppe ligands. The reaction of [Mo-(**P**₄)(dppe)] with CO afforded the carbonyl complex [Mo(CO)₂(**P**₄)].