CONTENTS

IMS 2000	
CONTENTS	V
ORGANIZATION AND STAFF	
COUNCIL	13
BUILDINGS AND CAMPUS	
RESEARCH ACTIVITIES I	
Department of Theoretical Studies	
I-A Development of New Numerical Techniques in the Study of Molecular Structure	
I-A-1 Spectral Density Calculation by Using the Chebyshev Expansion	17
I-A-2 Calculation of the ZEKE Spectrum of CO	17
I-A-3 Nonadiabatic Relaxation Through a Conical Intersection	17
I-B Electron-Hydrogen Bond in Water Clusters and Their Complexes with Atomic Ions	
I-B-1 Theoretical Studies of the Water-Cluster Anions Containing the OH{e}HO Structure:	
Energies and Harmonic Frequencies	18
I-B-2 Electron-Hydrogen Bonds and OH Harmonic Frequency Shifts	10
in Water Cluster Complexes with a Group 1 Metal Atom, $M(H_2O)_n$ (M = Li and Na)I-B-3 Theoretical Study of Photoabsorption Cross Sections of Water Cluster Anions	18 19
I-B-4 Theoretical Study of Photoabsorption Spectra of $M(H_2O)_n$ (M = Li and Na)	
I-C Computational Chemistry of Atomic and Molecular Processes in Atmospheric Environment	t 17
I-C-1 Accurate Potential Energy and Transition Dipole Moment Curves	
for Several Electronic States of CO ⁺	19
I-C-2 Ab initio MO Study of the A, D and Third ${}^2\Pi$ States of CO $^+$	20
I-C-3 Theoretical Studies of Einstein's A and B Coefficients of Rovibrational Transitions for	•
Carbon Monoxide: Simulation of Temperature Distribution of CO in the Solar Atmosphere	20
I-C-4 Theoretical Study on the Hydrogen Abstraction from Saturated Hydrocarbons by OH Radical	20
I-C-5 Theoretical Study on the Reaction Mechanism for Oxidation of Isoprene	20 20
I-D Prediction of Protein Tertiary Structures from the First Principles	20
I-D-1 Helix-Coil Transitions of Amino-Acid Homo-Oligomers in Aqueous Solution Studied	
by Multicanonical Simulations	
I-D-2 Multidimensional Replica-Exchange Method for Free Energy Calculations	21
I-D-3 Replica-Exchange Multicanonical Algorithm and Multicanonical Replica-Exchange	
Method for Simulating Systems with Rough Energy Landscape	21
I-D-4 Multicanonical Algorithm Combined with the RISM Theory for Simulating Peptides	21
in Aqueous Solution	21
of Ribonuclease A Studied by Monte Carlo Simulated Annealing	21
I-E Development of Simulation Algorithms for Complex Systems	21
I-E-1 Replica-Exchange Monte Carlo Methods for the Isobaric-Isothermal Ensemble	22
I-E-2 Ab Initio Replica-Exchange Monte Carlo Method for Cluster Studies	22
I-F Theory of Nonadiabatic Transition	
I-F-1 Non-Adiabatic Transitions in a Two-State Exponential Potential Model	23
I-F-2 Complete Solutions of the Landau-Zener-Stueckelberg Curve Crossing Problems,	22
and Their Generalizations and ApplicationsI-F-3 Complete Reflection in Two-State Crossing and Noncrossing Potential Systems	23
I-F-3 Complete Reflection in Two-State Crossing and Noncrossing Potential Systems	23
Complete Solutions of the Landau-Zener-Stueckelberg Problems and Their Applications	23
I-F-5 New Type of Nonadiabatic Dynamics: Transitions	23
between Asymptotically Degenerate States	24
I-G Theoretical Studies of Chemical Reaction Dynamics	
I-G-1 Electronically Adiabatic Chemical Reactions Analyzed by the Semiclassical Theory of	
Nonadiabatic Transition	24
I-G-2 Quantum Reaction Dynamics of O(³ P) + HCl on a New Ab Initio Potential Energy Surfa	ce -24
I-G-3 Quantum-Classical Correspondence in the $O(^{3}P)$ + HCl and $Cl(^{2}P)$ + OH Reactions for Total Angular Momentum $J=0$	24
101 10tal Aligulai Wiohiciltuiii $J=0$	24

I-G-4 New Implementation of the Trajectory Surface Hopping Method	
with Use of the Zhu-Nakamura Theory	25
I-G-5 Diabatic Slow Variable Discretization Approach	
in Time-Independent Reactive Scattering Calculations	25
I-G-6 Quantum Dynamics in the DH ₂ ⁺ Reaction System	25
I-H New Way of Controlling Molelular Processes	
I-H-1 Laser Control of Molecular Photodissociation	۰
with Use of the Complete Reflection Phenomenon	25
I-H-2 New Way of Controlling Molecular Processes by Lasers	26
I-I New Methods to Treat Scattering Problems	2.
I-I-1 Analytical Treatment of Singular Equations in Dissociative Recombination	26
I-I-2 Stable and Efficient Evaluation of Green's Function in Scattering Problem	26
I-J Theoretical Study of Multi-Dimensional Tunneling	20
I-J-1 Theoretical Study of Multidimensional Proton Tunneling in the Excited State of Tropolone	26
I-K Theoretical Studies of Ultrafast Nonlinear Optical Spectroscopy of Molecules	
in Condensed Phases	20
I-K-1 Two-Dimensional Line Shape Analysis of Photon Echo Signal	28
I-K-2 Cage Dynamics in the Third-Order Off-Resonant Response of Liquid Molecules: A Theoretical Realization	20
	20
I-K-3 Two-Dimensional Spectroscopy for Harmonic Vibrational Modes with Nonlinear System-Bath Interactions: Gaussian-Markovian Case	20
I-K-4 Two-Dimensional Spectroscopy and the Harmonically Coupled Anharmonic Oscillators	28
I-K-5 Two-Dimensional Raman and Infrared Signals Measured	20
from Different Phase-Matching Conditions	28
I-L Quantum dynamics in the condensed phases	20
I-L-1 Path-Integral Approach to Rotational Relaxation Processes of a Molecule in Solvation	20
I-L-2 Proton Tunneling in a Dissipative Environment: Raman Response and Reaction Rate	
I-M Soft Matter Physics in Riomimetic Systems	
I-M-1 On the Toughness of Biocomposites	29
I-M-2 Why is Nacre Strong?: Elastic Theory and Fracture Mechanics for Biocomposites	
with Stratified Structures	29
I-M-3 Mechanoelectric Effects in Ionic Gels	
I-N Liquid-Liquid Phase Transition of Water and Its Potential Surface	50
I-N-1 The Melting Temperature of Proton-Disordered Hexagonal Ice:	
A Computer Simulation of TIP4P Model of Water	31
I-N-2 Hydrogen Bonds between Water Molecules: Thermal Expansivity of Ice and Water	31
I-N-3 Potential Energy Surfaces of Supercooled Water: Intrabasin and Interbasin Structures	
Explored by Quenching, Normal Mode Excitation, and Basin Hopping	31
I-N-4 Molecular Dynamics Study of the Connectivity of Water Molecules in Supercooled States	31
I-N-5 Ice Nanotube: What Does the Unit Cell Look Like?	31
I-N-6 First-Order Transition in Confined Water between High Density Liquid and	
Low Density Amorphous Phases	32
I-O Development of Techniques for Prediction of Conformations	
and Applications to Proteins and Organic Compounds	
I-O-1 Kinetics of a Finite One-Dimensional Spin System as a Model for Protein Folding	33
I-O-2 Molecular Modeling of Human Serum Transferrin for Rationalizing the Changes	
in Its Physicochemical Properties Induced by Iron Binding.	
Implication of the Mechanism of Binding to Its Receptor	33
I-O-3 A CoMFA Analysis with Conformational Propensity: An Attempt to Analyze the SAR	
of a Set of Moleculas with Different Conformational Flexibility Using a 3D-QSAR Method -	33
I-O-4 Study on Photobase Generation from α-Aminoketones:	
Photocrosslinking of Epoxides with Carboxlic Acids	34
I-P Microscopic Solvation of Alkali Atom and Aggregates in Polar Solvent Clusters	
I-P-1 Solvation Process of Na_m in Small Ammonia Clusters:	
Photoelectron Spectroscopy of $Na_m^-(NH_3)_n$ ($m \le 3$)	35
I-P-2 Theoretical Study of $[Na(H_2O)_n]^ (n = 1-4)$ Clusters:	
Geometries, Vertical Detachment Energies and IR Spectra	35
I-P-3 Theoretical Study of $[Na(NH_3)_n]^-$ ($n = 1-4$)	35
I-Q Theoretical Analyses on Nonlinear Behavior of Complex Systems	
I-Q-1 Peptide Conformations in Alcohol and Water:	
Analyses by the Reference Interaction Site Model Theory	36
I-Q-2 Binary Fluid Mixture Confined between Macroparticles:	_
Surface-Induced Phase Transition and Long-Range Surface Forces	36
I-Q-3 Solvent Effects on Conformational Stability of Peptides: RISM Analyses	36

	I-Q-4 Effects of a Trace Amount of Hydrophobic Molecules on Phase Transition	
	for Water Confined between Hydrophobic Surfaces: Theoretical Results for Simple Models	36
	I-Q-5 Methodology for Predicting Approximate Shape and Size Distribution of Micelles	
I-R	Electronic Structure of a Molecule in Solution	
	I-R-1 Ab initio Study of Water: Liquid Structure, Electronic and Thermodynamic Properties	
	over a Wide Range of Temperature and Density	38
	I-R-2 Solvent Effects on a Diels-Alder Reaction in Supercritical Water: RISM-SCF Study	39
	I-R-3 A Theoretical Study on a Diels-Alder Reaction in Ambient and Supercritical Water:	
	Viewing Solvent Effects through Frontier Orbitals	39
	I-R-4 Self-Consistent Field, Ab initio Molecular Orbital and Three-Dimensional Reference	
	Interaction Site Model Study for Solvation Effect on Carbon Monoxide in Aqueous Solution	39
	I-R-5 Which Carbon Oxide is More Soluble?	
	Ab initio Study on Carbon Monoxide and Dioxide in Aqueous Solution	39
	I-R-6 NMR Chemical Shifts in Solution: A RISM-SCF Approach	39
	I-R-7 ElectronL Self-Trapping in Two Dimensional Fluid	40
I-S	Solvation Thermodynamics of Protein and Related Molecules	
- ~	I-S-1 Salt Effect on Stability and Solvation Structure of Peptide: An Integral Equation Study	40
	I-S-2 Theoretical Study for Partial Molar Volume of Amino Acids in Aqueous Solution:	
	Implication of Ideal Fluctuation Volume	40
I-T	Collective Density Fluctuations in Polar Liquids and Their Response to Ion Dynamics	
	I-T-1 Relaxation of Average Energy and Rearrangement of Solvent Shells	
	in Various Polar Solvents in Connection with Solvation Dynamics: Studied by RISM Theory	41
	I-T-2 Importance of Acoustic Solvent Mode and Solute-Solvent Radial Distribution Functions	
	in Solvation Dynamics: Studied by RISM Theory	41
T-TT	Liquid-Solid Interface	
10	I-U-1 Potentials of Mean Force of Simple Ions in Ambient Aqueous Solution. I.	
	Three-Dimensional Reference Interaction Site Model Approach	42
	I-U-2 Potentials of Mean Force of Simple Ions in Ambient Aqueous Solution. II.	12
	Solvation Structure from the Three-Dimensional Reference Interaction Site Model Approach,	
	and Comparison with Simulations	43
	I-U-3 Hydration Free Energy of Hydrophobic Solutes Studied by a Reference Interaction Site	73
	Model with a Repulsive Bridge Correction and a Thermodynamic Perturbation Method	43
	I-U-4 Liquid Structure at Metal Oxide-Water Interface:	73
	Accuracy of a Three-Dimensional RISM Methodology	13
	I-U-5 Self-Consistent, Kohn-Sham DFT and Three-Dimensional RISM Description	
	of a Metal –Molecular Liquid Interface	43
T-V	Dimensional Crossovers and Excitation Spectra in Quasi-One-Dimensional Organic Conductor	rc rc
1- 1	I-V-1 Quantum Phase Transitions and Collapse of the Mott Gap	13
	in the $d = 1 + \varepsilon$ Dimensional Hubbard Model with $2k_F$ Umklapp Scattering	15
	I V 2 One and True Dand Highhard Madelain J. 1 to Dimensional	
	Dimensionality Effects on the Charge and Spin Gap Phases	15
	I-V-3 Interplay of Randomness, Electron Correlation, and Dimensionality Effects	
	in Quasi-One-Dimensional Conductors	15
	I-V-4 Charge Gap and Dimensional Crossovers in Quasi-One-Dimensional Organic Conductors	45
	I-V-5 Dimensionality Effects on the Charge Gap in the Dimerized Hubbard Model at Quarter Filli	
	the Density-Matrix and Perturbative Renormalization-Group Approaches	
	I-V-6 Intra- and Inter-Chain Dynamic Response Functions in Quasi-One-Dimensional Conductors	
T_XX	Optical Excitations in Charge-Lattice-Ordered Phases of One-Dimensional Materials	3 70
1- **	I-W-1 Charge Ordering and Lattice Modulation	
	in Quasi-One-Dimensional Halogen-Bridged Binuclear Metal Complexes	46
	I-W-2 Charge Ordering and Lattice Modulation in MMX Chains	46
	I-W-3 Charge Ordering and Optical Conductivity of MMX Chains	46
	I-W-4 Charge Excitations in an Alternate Charge Polarization Phase	
	of a One-Dimensional Two-Band Extended Peierls-Hubbard Model for MMX Chains	17
	IWEUTH DOWN IN A CONTRACTOR	
		17
T_V	Magnetic and Optical Properties of Two-Dimensional Metal-Complex and Organic Conductor	 /
1-A	I-X-1 Collective Excitations around Charge Ordered States and Coexistent States	3
	with Different Orders	17
	I-X-2 Anisotropic Collective Excitations around Various Charge Ordering States	
	I-X-2 Amsorropic Conective Excitations around various Charge Ordering States	
I_V	Multi-Phase Stability and Nonlinear Dynamics near Phase Boundary	40
1-1	I-Y-1 Influence of Short-Range Interference on Ionization Threshold Law	40
	I-Y-2 Potential Analysis for Neutral-Ionic Phase Transition	4 9 40
	1 1 2 1 Occided Fallety 515 TOT Technic These Transition	-+2

I-Y-3 Localized Vibrational Modes of Excitations in Electroluminescent Polymers	49
I-Y-4 Photoinduced Polarization Inversion in a Polymeric Molecule	49
RESEARCH ACTIVITIES II	51
Department of Molecular Structure	
II-A Laser Cooling and Trapping of Metastable Helium Atoms	
II-A-1 Magneto-Optical Trap of Metastable Helium-3 Atoms	51
II-B Spectroscopic Studies on Atoms and Ions in Liquid Helium	<i>5</i> 1
II-B-1 Theoretical Studies on the Spectra of Yb ⁺ Ions in Liquid Helium	31
in Collisions with He Atoms	51
II-C Endohedral Metallofullerenes: New Fullerene Molecules with Novel Properties	31
II-C-1 La@C ₈₂ Anion. An Usually Stable Metallofullerene	53
II-C-2 Transient Spectroscopic Properties of Endohedral Metallofullerenes,	33
La@Cs2 and La2@Cs0	53
II-C-3 Vibrational Spectroscopy of Endohedral Dimetallofullerene, La ₂ @C ₈₀	53
II-D Structure and Function of Respiratory Terminal Oxidases	
II-D-1 Probing Molecular Structure of Dioxygen Reduction Site of Bacterial Quinol Oxidases	
through Ligand Binding to the Redox Metal Centers	54
II-D-2 Active Site Structure of SoxB-Type Cytochrome bo ₃ Oxidase from Thermophilic Bacil	lus -54
II-E Structure and Function of Transmembrane Electron Transfer System	
in Neuroendocrine Secretory Vesicles	
II-E-1 Reduction of Heme Iron Suppresses the Carbethoxylation of Two Histidyl	
and One Tyrosyl Residues Indispensable for the Transmembrane Electron Transfer Reactio	n ~~
of Cytochrome b_{561}	55
II-E-2 Planarian Cytochrome b_{561} : A Transmembrane Electron Transfer Protein Unique to	
Neuroendocrine Secretory Vesicles II-F Structure and Function of Steroidogenic Cytochrome P450 System	33
II-F-1 Direct Heme-Steroid Interaction in Cytochrome P450c21 Studied by FTIR Spectroscop	v 55
II-F-2 Adrenodoxin-Cytochrome P450scc Interaction as Revealed by EPR Spectroscopy:	y33
Comparison with Putidaredoxin-Cytochrome P450cam System	56
II-G Biomolecular Science	30
II-G-1 Resonance Raman Investigation of Fe–N–O Structure of Nitrosylheme in Myoglobin	
and Its Mutants	57
II-G-2 Novel Iron Porphyrin-Alkanethiolate Complex with Intramolecular NH···S Hydrogen B	
Synthesis, Spectroscopy, and Reactivity	57
II-G-3 Mechanism of the Anionic Cyclopolymerization of Bis(dimethylvinylsilyl)methane	58
II-G-4 Synthesis and Characterization of Novel Alkylperoxo Mononuclear Iron(III) Complexe	S
with a Tripod: Pyridylamine Ligand:	
A Model for Peroxo Intermediates in Reactions Catalyzed by Non-Heme Iron Enzymes	58
II-G-5 Interactions of Phosphatidylinositol 3-Kinase Src Homology 3 Domain	
with Its Ligand Peptide Studied by Absorption, Circular Dichroism,	~ 0
and UV Resonance Raman Spectroscopies	58
II-G-6 Resonance Raman Studies of Oxo Intermediates in the Reaction	50
of Pulsed Cytochrome <i>bo</i> with Hydrogen Peroxide	39
and Its Application to Cytochrome c Oxidase	59
II-G-8 An Approach to the O ₂ Activating Mononuclear Non-heme Fe Enzymes:	59
Structural Characterization of Fe(II)-Acetato Complex and Formation of Alkylperoxoiron(I	II)
Species with the Highly Hindered Hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate	
II-G-9 Structures of Reaction Intermediates of Bovine Cytochrome c Oxidase Probed	
by Time-Resolved Vibrational Spectroscopy	59
II-G-10 Heme Structure of Hemoglobin M Iwate $[\alpha 87(F8)$ His \rightarrow Tyr]:	
A UV and Visible Resonance Raman Study	60
II-G-11 Model Complexes for the Active Form of Galactose Oxidase.	
Physicochemical Properties of Cu(II)- and Zn(II)-Phenoxyl Radical Complexes	60
II-G-12 Characterization of Imidazolate-Bridged Cu(II)-Zn(II) Heterodinuclear and Cu(II)-Cu	(II)
Homodinuclear Hydroperoxo Complexes as Reaction Intermediate Models of Cu, Zn-SOD	60
II-H Fast Dynamics of Photoproducts in Solution Phases	
II-H-1 Saturation Raman Spectroscopy as a tool for Studying the Excited States of Complex C	
Molecules: Application to Nickel Octaethylporphyrin	61
II-H-2 Construction of Novel Nanosecond Temperature Jump Apparatuses Applicable to Ram	an
Measurements and Direct Observation of Transient Temperature	61

	II-H-3 Identification of Histidine 77 as the Axial Heme Ligand of Carbonmonoxy CooA by	
	Picosecond Time-Resolved Resonance Raman Spectroscopy	-61
	II-H-4 A Role of Solvent in Vibrational Energy Relaxation of Metalloporphyrins	-62
II-I M	lolecular and Electronic Structures of Metallofullerenes and the Fullerene Radical Anions	
	II-I-1 2D-HYSCORE Measurements of 13 C–La@C ₈₂	-63
		-63
	tate Correlated Raman Spectroscopy	
	II-J-1 Investigations of Orientational Order for an Antiferroelectric Liquid Crystal by Polarized Raman Scattering Measurements	61
	II-J-2 Polarized Raman Scattering Study for Frustoelectric Liquid Crystals	-64
RESEAR	CH ACTIVITIES III	65
Depart	ment of Electronic Structure	
ÎII-A	Photochemical Synthesis of Exotic Atomic-Molecular Binary Clusters in Solution:	
	Radical -Transition Metal Alternatively Stacking $(\pi-d)_n$ Clusters	
	III-A-1 π Radical-Transition Metal Alternatively Stacking $(\pi - d)_n - \pi$ Clusters: (I)	
	$V_6(C_5H_5)_7$, a Pentagonal Ring ((C_5H_5)V) with a Rolling Axis Vanadocene (C_5H_5)V(C_5H_5)?	-65
	III-A-2 Development of a New Mass Spectrometer Allowing the Injection of Solution Directly	
	into Vacuum and the Desolvation through the Collision of Liquid Jet	
III D	with Solvent Gas Flow Rebounded from a Rotating Titanium Drum for Solute Deposition	-66
	States of Neutral and Ionic Molecular Associates in Solutions III-B-1 Monomeric and Cluster States of Acetic Acid Molecules in Solutions:	
	A Raman Spectroscopic Study	-66
	III-B-2 Comparison of the Theoretical Models for Calculating Acetic Acid Clusters	.00
	in Aqueous Solution	-67
III-C	Ultrafast Dynamics and Structural Changes of Excited Cation Radicals in Solution	0,
	III-C-1 First Observation of the Formation Process of a Solvated Aromatic Cation Radical	
	in Polar Solvents: A Two-Photon Pumped Femtosecond Time-Resolved Absorption Study	-68
	III-C-2 Vibrational Relaxation Process of Solvated Aromatic Cation Radicals in Polar Solvents:	
	A Two-Photon Pumped Picosecond Time-Resolved Raman Study	-69
	Spectroscopic and Dynamical Studies on Charge Delocalization and Charge Transfer in	
	omatic Molecular Cluster Ions	
	III-D-1 Photodissociation Spectroscopy of Benzene Cluster Ions in Ultraviolet and Infrared Region	
	Static and Dynamic Behavior of Positive Charge in Cluster Ions	
	III-D-3 Vibrational and Electronic Spectra of (Benzene-Benzyl Alcohol) ⁺ ;	. / 1
	Predominance of Charge Resonance Interaction over Hydrogen-Bonding Interaction	-71
	III-D-4 Electronic and Vibrational Spectra of Aniline-Benzene Hetero-Dimer	, 1
	and Aniline Homo-Dimer Ions	-71
III-E	Structures and Reactivities of Metal Clusters	
	III-E-1 Construction of Apparatus for Mass Analysis of Metal Clusters	-73
	Spectroscopy and Dynamics of Vibrationally Excited Molecules and Clusters	
	III-F-1 IR dip Spectra of Photochemical Reaction Products in a Phenol/Ammonia Cluster	
	—Examination of Intracluster Hydrogen Transfer	-74
	III-F-2 Structural Characterization of the Acridine– $(H_2O)_n$ ($n = 1-3$) Clusters	7.4
	by Fluorescence Dip Infrared Spectroscopy	-/4
	III-F-3 Internal Methyl Group Rotation in o-Cresol Studied by Pulsed Field Ionization-ZEKE Photoelectron Spectroscopy	74
	III-F-4 Pulsed Field Ionization-ZEKE Spectroscopy of Cresoles and Their Aqueous Complex:	. /4
	Internal Rotation of Methyl Group and Intermolecular Vibrations	-75
	III-F-5 Butterfly Vibration of the Tetrafluorobenzene Cation Studied	75
	by Pulsed Field Ionization-ZEKE Photoelectron Spectroscopy	-75
III-G	Time-Resolved Photoelectron Imaging on Ultrafast Chemical Dynamics	
	III-G-1 Femtosecond Time-Resolved Photoelectron Imaging on Ultrafast Dephasing in Pyrazine	-76
III-H	Crossed Beam Studies on Bimolecular Reaction Dynamics	
	III-H-1 State-Resolved Differential Cross Section Measurements	
	for the Inelastic Scattering of NO + Ar	-76
	Non-Adiabatic Molecular Photodissociation Dynamics Studied by Polarization Spectroscopy	
	III-I-1 Atomic Orbital Orientation in Photodissociation of OCS	-17
	Photochemistry on Well-Defined Surfaces III. 1. Excitation Machanisms and Photochemistry of Adsorbates with Spherical Symmetry	70
	III-J-1 Excitation Mechanisms and Photochemistry of Adsorbates with Spherical Symmetry III-J-2 Photo-induced Oxygen Elimination Reaction at an Ag(110)-p(2×1)-O Surface	-10 -70
	111 5 2 1 1000-induced Oxygen Eminiation Reaction at an Ag(110)-p(2×1)-O Surface	10

III-K Structure and Properties of Polyoxometalates with a Magnetic, Electronic, or Biological Significance	
III-K-1 Luminescence and Energy Transfer Phenomena in Tb ³⁺ /Eu ³⁺ -Mixed	
Polyoxometallolanthanoates $K_{15}H_3[Tb_{1.4}Eu_{1.6}(H_2O)_3(SbW_9O_{33})(W_5O_{18})_3]\cdot 25.5H_2O$	
and Na ₇ H ₁₉ [Tb _{4.3} Eu _{1.7} O ₂ (OH) ₆ (H ₂ O) ₆ Al ₂ (Nb ₆ O ₁₉) ₅]·47H ₂ O	79
III-K-2 Mixed-Valence Ammonium Trivanadate with a Tunnel Structure Prepared	
by Pyrolysis of Polyoxovanadate	79
III-K-3 Photoassisted Dehalogenation of Organo-Chlorine Compounds	
by Paratungstate A in Aqueous Solutions	79
III-K-4 A Novel-Type Mixed-ligand Polyoxotungstolanthanoate, $[Ln(W_5O_{18})(BW_{11}O_{39})]^{12-} (Ln = Ce^{3+} \text{ and } Eu^{3+})$	
$[Ln(W_5O_{18})(BW_{11}O_{39})]^{12-}$ (Ln = Ce ³⁺ and Eu ³⁺)	79
III-K-5 Photoreduction Processes of a-Dodecamolybdophosphate, α -[PMo ₁₂ O ₄₀] ³⁻ :	
³¹ P-NMR, Electrical Conductivitiy, and Crystallographic Studies	80
III-K-6 Na ₁₀ (glycine) ₂ [H ₂ W ₁₂ O ₄₂]·28H ₂ O	80
III-K-7 Crystal and Electronic Structure and Magnetic Susceptibility of the Photochemically Prepared Layered Vanadyl Phosphate, Na(VO) ₂ (PO ₄) ₂ ·4H ₂ O	90
RESEARCH ACTIVITIES IV	81
Department of Molecular Assemblies	
IV-A Spectroscopic Study of Organic Conductors IV-A 1. Charge Dispreparation of Ω (REDT TTE)-PhZn(SCN).	
IV-A-1 Charge Disproportionation of θ -(BEDT-TTF) ₂ RbZn(SCN) ₄ Studied by Raman Spectroscopy	Q 1
IV-A-2 Isotope Shift and Charge Susceptibility of C=C Related Normal Modes	01
of BEDT-TTF Molecule	81
IV-A-3 Raman-Active C=C Stretching Vibrations of κ-(BEDT-TTF) ₂ Cu[N(CN) ₂]Br	
IV A A An Influence of the Cooling Pete to the Domen on ID Spectra	
of Partially Deuterated κ -(BEDT-TTF) ₂ Cu[N(CN) ₂]Br	82
IV-A-5 Spectroscopic Evidence for the Charge Disproportionation	
in a Two-Dimensional Organic Conductor, θ-(BDT-TTP) ₂ Cu(NCS) ₂	82
IV-A-6 ESR Properties of a Quasi-Two-Dimensional Organic Conductor,	
θ -(BDT-TTP) ₂ Cu(NCS) ₂	83
IV-A-7 Infrared Spectroscopic Study of the Band Structure of (EO-TTP) ₂ AsF ₆	83
IV-A-8 Optical Properties and Metal-Insulator Transitions	
in Organic Metals (BEDT-ATD) ₂ X (solvent) ($X = PF_6$, AsF_6 , BF_4 ; solvent = THF, DHF, DO)83
IV-B Solid State Properties of Organic Conductors with p-d Interaction	
IV-B-1 Magnetic Exchange Interactions in Quasi-One-Dimensional Organic Alloy	0.4
of $Co_{0.01}Ni_{0.99}Pc(AsF_6)_{0.5}$	84
IV-B-2 Pressure Dependence of Resistivity in Quasi-One-Dimensional Conductor CoPc(AsF ₆) ₀	
IV-B-3 Antiferromagnetic Phase Transition of DMTSA-FeCl ₄	85
IV-C Microscopic Investigation of Molecular-Based Conductors IV-C-1 Low-Temperature Electronic States in (EDT-TTF) ₂ AuBr ₂	96
IV-C-1 Low-Temperature Electronic States in (ED1-11F) ₂ Aubi ₂	
IV-C-3 Magnetic Investigation of Organic Conductors Based on TTP Derivatives	27
IV-C-4 Possible Charge Disproportionation and New Type Charge Localization	07
in θ-(BEDT-TTF) ₂ CsZn(SCN) ₄	87
IV-D Development of Magnetic Organic Superconductors	07
IV-D-1 BETS as a Source of Molecular Magnetic Superconductors	
(BETS = Bis(ethylenedithio)tetraselenafulvalene)	88
IV-D-2 Superconductivity, Antiferromagnetism and Phase Diagram	
of a Series of Organic Conductors, λ -(BETS) ₂ Fe _x Ga _{1-x} Br _y Cl _{4-y}	88
IV-D-3 Fermi Surface and Phase Transition in Magnetic Field Parallel to the Conducting Plane	
in λ -(BETS) ₂ FeCl ₄	89
IV-D-4 Anisotropy of Magnetic Suscepotibilities of λ -(BETS) ₂ FeBr _x Cl _{4-x}	89
IV-D-5 A Novel Antiferromagnetic Organic Superconductor κ-(BETS) ₂ FeBr ₄ [where BETS = Bis(ethylenedithio)tetraselenafulvalene]	
[where BETS = Bis(ethylenedithio)tetraselenafulvalene]	90
IV-D-6 The <i>x</i> -Dependence of Electrical Properties and Antiferromagnetic Ordering between Fe ³⁺ Ions in κ-BETS ₂ FeCl _x Br _{4-x} System	
between Fe ³⁺ Ions in κ-BETS ₂ FeCl _x Br _{4-x} System	90
IV-D-7 Successive Antiferromagnetic and Superconducting Transition in an Organic Metal,	
κ-(BETS) ₂ FeCl ₄	90
IV-E Structural and Electrical Properties of Molecular Crystals at Low Temperature and/or Hig	h
Pressure IV-E-1 Origin of Ferromagnetic Exchange Interactions in a Fullerene-Organic Compound	O1
1 v - L - 1 Origin of 1 originagnous Exchange interactions in a runctene-organic compound	- フ1

	IV-E-2 Low temperature X-ray Crystal Structure Determination of α-(BEDT–TTF) ₂ I ₃	
	—Stripe-Like Charge Distribution at Low Temperature	92
	IV-E-3 Crystal and Band Structure Examinations	
	of High-Pressure Molecular Superconductor [(C ₂ H ₅) ₂ (CH ₃) ₂ N][Pd(dmit) ₂] ₂ at 10 kbar	92
	IV-E-4 Superconducting Transition of (TMTTF) ₂ PF ₆ above 50 kbar	
	[TMTTF = Tetramethyltetrathiafulvalene]	92
	IV-E-5 Electrical Resistivity Measurements of Organic Single Crystals	
	by Diamond Anvil Cell up to 15 GPa	93
IV-F	Development of New Functional Molecular Materials	
	IV-F-1 A Three-Dimensional Synthetic Metallic Crystal	
	Composed of Single Component Molecules	93
	IV-F-2 Development of Single-Component Molecular Metals	,,,
	Based on Transition Metal Complexes with Extended-TTF Dithiolate Ligands	94
	IV-F-3 Synthesis and Properties of a New Organic Donor Containing a TEMPO Radical	94
	IV-F-4 Synthesis, Structures and Properties	
	of an New TSeF Derivative Containing Pyrazino-Ring and Its Cation Radical Salts	95
IV.G	Electrical Properties of Organic Semiconductors in Ultrahigh Vacuum)3
1 V - G	IV-G-1 Quasi-Intrinsic Semiconducting State of Titanyl-phthalocyanine Films Obtained	
	under Ultrahigh Vacuum Conditions	06
туп	Preparation and Characterization of Highly Oriented Organic Films	90
1 V -II	IV H. 1. Substrate Induced Order and Multilayer Enitoxial Crowth	
	IV-H-1 Substrate-Induced Order and Multilayer Epitaxial Growth of Substituted Phthalocyanine Thin Films	06
	Of Substituted Philarocyaline Tillis Films	90
	IV-H-2 Ordered Growth of Substituted Phthalocyanine Thin Films: Hexadecafluorophthalocyaninatozinc on Alkali Halide (100) and Microstructured Si Surface	. 07
TX7 T	IV-H-3 Energy Transfer in Highly Oriented Permethyl-Dodecasilane and -Octadecasilane Films	597
14-1	Properties of Gas Adsorption on Single-Walled Carbon Nanotube Aggregates	
	IV-I-1 Properties of Micropores in Single-Walled Carbon Nanotubes	00
	Studied by N ₂ Gas Adsorption Isotherm Measurements	98
	IV-I-2 Direct Evidence of Xenon Gas Adsorption Inside of Snigle-Walled Carbon Nanotubes	00
	Studied by ¹²⁹ Xe-NMR	98
IV-J	Electronic Properties of Pristine and Doped Snigle-walled Carbon Nanotubes aggregates	
	IV-J-1 Electronic States of Single-Walled Carbon Nanotube Aggregates	
	Studied by Low Temperature ¹³ C-NMR	99
	IV-J-2 Electronic States of Alkali-Metal Doped Single-Walled Carbon Nanotube Aggregates	
	IV-J-3 Electronic States of Br ₂ Doped Single-Walled Carbon Nanotube Aggregates	100
IV-K	Structural and Electronic Properties of Fullerene-based Compounds	
	IV-K-1 Study on the Physical Properties of Na ₄ C ₆₀	101
IV-L	Development of Pulsed Field Gradient NMR Spectroscopy	
	IV-L-1 Direct Measurement of Self-Diffusion Coefficients in Solids:	
	Plastic Crystalline Hexamethylethane	102
IV-M	Phase Transition Mechanism of Reentrant Liquid Crystal	
	IV-M-1 Neutron Small-Angle Scattering of Reentrant Liquid Crystal CBOBP	102
IV-N	Systematic Study of Organic Conductors	
	IV-N-1 Structural Genealogy of BEDT-TTF-Based Organic Conductors III.	
	Twisted Molecules: δ and α' Phases	104
	IV-N-2 Raman and Optical Investigations on Charge Localization	
	in the One-Dimensional Organic Conductors (TTM-TTP)(I ₃) _{5/3} and (TSM-TTP)(I ₃) _{5/3}	104
	IV-N-3 Raman Investigation of the One-Dimensional Organic Conductor	
	with a Half-Filled Band, (TTM-TTP)I ₃	105
	IV-N-4 ESR Investigation of Organic Conductors	
	(DTM-TTP)(TCNQ)(TCE) and (TMET-TTP)(TCNQ)	105
	IV-N-5 Structural and Magnetic Properties of Cu[C(CN) ₃] ₂ and Mn[C(CN) ₃] ₂	105
IV-O	Photoelectron Spectroscopy of Organic Solids in Vacuum Ultraviolet Region	100
<u> </u>	IV-O-1 Angle-Resolved Photoemission Measurements of ω-(n-pyrrolyl)alkanethiol	
	Self-Assembled Monolayers Using <i>in-situ</i> Sample Preparation Apparatus	107
	IV-O-2 Photoemission Spectra of LiNiO ₂ Catalyst for Oxidative Coupling of Methane	
	IV-O-3 Intramolecular Energy-Band Dispersion in Oriented Thin Films of n -CF ₃ (CF ₂) ₂₂ CF ₃	107
	Observed by Angle-Resolved Photoemission with Synchrotron Radiation	107
	Observed by Americ-Resource i nousennssion with dynemotion radiation	- 1(//

V-H-2 Desorption of Excimers from the Surface of Solid Ne	
by Low Energy Electron or Photon Impact	121
V-I Bioinorganic Studies on Structures and Functions of Non-Heme Metalloenzymes	
Using Model Complexes	
V-I-1 A Novel Diiron Complex as a Functional Model for Hemerythrin	122
V-I-2 Reactivity of Hydroperoxide Bound to a Mononuclear Non-Heme Iron Site	122
V-J Synthesis and Physical Properties of Novel Molecular Metals	
V-J-1 Preparation, Structures and Physical Properties of Selenium Analogues of DTEDT	
as Promising Donors for Organic Metals	123
V-J-2 Preparation and Properties of Gold Complexes with TTF Dithiolato Ligands	123
V-J-3 New TTP Donors Containing Chalcogenopyran-4-ylidene:	
Preparation, Structures, and Electrical Properties	124
V-J-4 Structures and Properties of CHEO-TTP Salts	124
V-J-5 Structures and Physical Properties of (CHTM-TTP) ₂ TCNQ	124
V-K Fast Bimolecular Reaction Kinetics in Solution	12
V-K-1 Ultrafast Bimolecular Reaction Kinetics between S ₁ trans-Stilbene and Carbon Tetrach	loride
Studied by Sub-Picosecond Time-Resolved Visible Absorption Spectroscopy	
V-L Development of Model Core Potentials and Post Hartree-Fock Calculations	12(
to Atoms and Molecules	
V-L-1 A Theoretical Study on the Ionization of CO ₂ and CS ₂	
with Analysis of the Vibrational Structure of the Photoelectron Spectra	127
Will Allarysis of the vibrational structure of the Floride Fection Spectra	12
V-L-2 A Theoretical Study on the Ionization of OCS	100
with Analysis of the Vibrational Structure of the Photoelectron Spectrum	
V-L-3 Configuration Interaction Study of Differential Correlation Energies in Ca ⁺ , Ca and Ca ⁻	12
V-L-4 Spin-Orbit Configuration Interaction Calculations of Low-Lying Electronic States	100
of NaCl Using Model Core Potential	12
V-M Theoretical Study of the Electronic Structures of Weakly Bound Molecules	100
V-M-1 Ab initio Molecular Orbital Study of Fe(CO) _n $(n = 1, 2, \text{ and } 3)$	128
V-M-2 Ab initio CASSCF and MRSDCI Calculations of the (C ₆ H ₆) ³⁺ Radical	
V-M-3 Molecular Orbital Study on OH Stretching Frequency of Phenol Dimer and its Cation	128
V-N Theory for Quantum Liquids and Molecular Dynamics Study Using Potentials by ab initio	
Molecular Orbital Calculations	
V-N-1 An Integral Equation Theory for Quantum Liquids:	100
Finite-Temperature Kohn-Sham Debsity-Functional FormulationV-N-2 Structure Change of Supercritical Mercury	120
	12,
V-O Determination of Structures of Neutral Clusters	12,
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field	
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	13(e
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	13(e
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 130
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field The Role of the Tunneling Motion	130 e 130
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field The Role of the Tunneling Motion	130 e 130
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	13(e 13(131
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 130 131
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 130 131
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 130 131
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 130 131
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 130 131 131
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 131 131 131
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion ————————————————————————————————————	130 e 131 131 131 132
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 131 131 131 132
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 131 131 131 132 133
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 131 131 131 132 133
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion — V-O-2 Tunneling Motion in (HCl)₂ Hydrogen-Bonded Dimer Probed by Electrostatic Hexapol and Doppler-Selected TOF Measurement for the Internal Energy Distribution of [ClHCl] — V-P Reaction Dynamics in the Gas Phase and on Surface V-P-1 Evidence for Steric Effect in Methyl Chloride Ionization by Metastable Argon Atoms — V-P-2 Direct Observation of Steric Effect in Penning Ionization Reaction of Ar* + CHCl₃ → CHCl₂⁺ + Cl + e⁻ + Ar — V-P-3 Hydrogen Adsorption and Reaction on the Ir{100}-(1×5) Surface — V-P-4 Hot Atom Mechanism in Hydrogen Exchange Reaction on the Ir{100} Surface — V-P-4 Millimeter-Wave Spectroscopy Combined with Pulsed-Jet Expansion Technique for the Detection of the Novel Unstable Species and the van der Waals Mode Transitions of Molecular Clusters V-Q-1 Millimeter-Wave Spectroscopy of the van der Waals Bending Band of He–HCN — V-Q-2 Millimeter Wave Spectroscopy of the HCN−H₂ Cluster — V-Q-3 Millimeter Wave Spectroscopy of the van der Waals Complex — V-Q-4 Millimeter Wave Spectroscopy of the van der Waals Bending Band of OCO-DF Generated in a Supersonic Jet Expansion — V-R Ion-Molecule Reactions in the Troposphere	130 e131 131 131 132 133
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion	130 e 131 131 132 133 134 135
 V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion ————————————————————————————————————	130 e 131 131 132 133 134 135
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion —The Role of the Tunneling Motion ————————————————————————————————————	130 e131 131 131 132 133 134 135
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion V-O-2 Tunneling Motion in (HCl)₂ Hydrogen-Bonded Dimer Probed by Electrostatic Hexapol and Doppler-Selected TOF Measurement for the Internal Energy Distribution of [ClHCl] V-P Reaction Dynamics in the Gas Phase and on Surface V-P-1 Evidence for Steric Effect in Methyl Chloride Ionization by Metastable Argon Atoms - V-P-2 Direct Observation of Steric Effect in Penning Ionization Reaction of Ar* + CHCl₃ → CHCl₂⁺ + Cl + e⁻ + Ar	130 e131 131 131 132 133 135 135
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion V-O-2 Tunneling Motion in (HCl)₂ Hydrogen-Bonded Dimer Probed by Electrostatic Hexapol and Doppler-Selected TOF Measurement for the Internal Energy Distribution of [ClHCl] V-P Reaction Dynamics in the Gas Phase and on Surface V-P-1 Evidence for Steric Effect in Methyl Chloride Ionization by Metastable Argon Atoms - V-P-2 Direct Observation of Steric Effect in Penning Ionization Reaction of Ar* + CHCl₃ → CHCl₂⁺ + Cl + e⁻ + Ar	130131131131132133134135136136
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion V-O-2 Tunneling Motion in (HCl)₂ Hydrogen-Bonded Dimer Probed by Electrostatic Hexapol and Doppler-Selected TOF Measurement for the Internal Energy Distribution of [ClHCl] V-P Reaction Dynamics in the Gas Phase and on Surface V-P-1 Evidence for Steric Effect in Methyl Chloride Ionization by Metastable Argon Atoms - V-P-2 Direct Observation of Steric Effect in Penning Ionization Reaction of Ar* + CHCl₃ → CHCl₂⁺ + Cl + e⁻ + Ar	130131131131132133134135136136
V-O Determination of Structures of Neutral Clusters V-O-1 Focusing of DCl and HCl Dimers by an Electrostatic Hexapole Field —The Role of the Tunneling Motion V-O-2 Tunneling Motion in (HCl)₂ Hydrogen-Bonded Dimer Probed by Electrostatic Hexapol and Doppler-Selected TOF Measurement for the Internal Energy Distribution of [ClHCl] V-P Reaction Dynamics in the Gas Phase and on Surface V-P-1 Evidence for Steric Effect in Methyl Chloride Ionization by Metastable Argon Atoms - V-P-2 Direct Observation of Steric Effect in Penning Ionization Reaction of Ar* + CHCl₃ → CHCl₂⁺ + Cl + e⁻ + Ar	130131131131132132135136136

V-U Development of ¹³ C High-Resolution NMR Spectroscopy	
for Nematic and Cholesteric Liquid Crystals	
V-U-1 Direct Determination of ¹³ C Chemical Shift Anisotropies of Liquid Crystals	4.00
by Combining OMAS NMR and Rotor-Synchronous Pulses with Hankel Transformation	
RESEARCH ACTIVITIES VI	139
Department of Vacuum UV Photoscience	
VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excited Molecules	
VI-A-1 Exchange Interaction in the 1s- σ^* Resonance of the Triplet Ground State of S ₂	
in Comparison with O_2	139
VI-A-2 Polarization Dependence of O ⁺ /O ₂ ⁺ Fragmentations at the Terminal O1s-to- σ * Excitat	
of Ozone: A Memory Effect of Core-Hole Localization During the Auger Decay	
VI-A-3 Molecular Field and Spin-Orbit Splittings in the 2p Ionization of Second-Row Elemen	ts:
A Breit-Pauli Approximation Applied to OCS, SO ₂ , and PF ₃	140
VI-B Soft X-ray Photoelectron-Photoabsorption Spectroscopy and Electronic Structure	
of Transition Metal Compounds	
VI-B-1 Ni 2p Photoabsorption and Resonant Photoelectron Spectroscopy of High-Spin Ni Cor	
Ni(N,N)-dimethylethylenediamine) ₂ Cl ₂	140
VI-B-2 Mg and Al K-edge XAFS Measurements with a KTP Crystal Monochromator	
VI-C Observation of Vibrational Coherence (Wavepacket Motion) in Solution-Phase Molecules	
Using Ultrashort Pulses	
VI-C-1 Observation of Vibrational Coherence of S ₁ trans-Stilbene in Solution	1.42
by 40-fs-Resolved Absorption SpectroscopyVI-C-2 Generation of Two Independently-Tunable Pulses	142
for Extremely-Fast Pump-Probe Absorption Spectroscopy	142
VI-C-3 Measurement of Impulsive Stimulated Raman Scattering Using Ultra-Short Pulses	142
Generated by a Krypton Gas-Filled Hollow Fiber	143
VI-C-4 Construction of an Apparatus for Optical Heterodyne Detected Impulsive Stimulated F	Raman
Scattering Measurement Using a Phase Mask	144
VI-D Studies of Primary Photochemical/physical Processes	
Using Femtosecond Electronic Spectroscopy	
VI-D-1 Ultrafast Excited-State Proton Transfer Dynamics of 1,8-dihydroxyanthraquinone (chr	ysazin)
Studied by Femtosecond Time-Resolved Fluorescence Spectroscopy	
VI-D-2 Femtosecond Dynamics of Photoexcited <i>trans</i> -Azobenzene	
Observed by Time-Resolved Fluorescence Up-Conversion Spectroscopy	145
VI-D-3 S ₂ Emission of a Series of Zinc(II) Porphyrins	
Studied by Femtosecond Fluorescence Spectroscopy	146
VI-D-4 Construction of Femtosecond IR-IR Pump-Probe Spectrometer	146
VI-E Studies of Photochemical Reactions Using Picosecond Time-Resolved Vibrational Spectro	
VI-E-1 Observation of Picosecond Time-Resolved Raman Spectra of <i>p</i> -Nitroaniline	
VI-E-2 Femtosecond and Picosecond Time-Resolved Spectra of 5-Dibenzosuberenone	148
VI-E-3 Resonance Hyper-Raman Scattering of <i>all-trans</i> Retinal from a Diluted Solution: Excitation Profile and Energy Levels of the Low-Lying Excited Singlet States	1/10
VI-F Synchrotron Radiation Stimulated Surface Reaction and Application to Nanoscience	140
VI-F-1 SR-Stimulated Etching and OMVPE Growth	
for Semiconductor Nanostructure Fabrication	150
VI-F-2 Aligned Island Formation Using Step-Band Networks on Si(111)	150
VI-F-3 Scanning Tunneling Microscopy Study of Surface Morphology of Si(111)	150
after Synchrotron Radiation Stimulated Desorption of SiO ₂	151
VI-F-4 Assignments of Bending and Stretching Vibrational Spectra	
and Mechanisms of Thermal Decomposition of SiH ₂ on Si(100) Surfaces	151
VI-F-5 Control of Surface Composition on Ge/Si(001) by Atomic Hydrogen Irradiation	151
VI-F-6 Reconstruction of BL4A Beam Line	
and Infrared Reflection Absorption Spectroscopy System	151
VI-G Photoionization Dynamics Studied by Electron Spectroscopy	
Combined with a Continuous Synchrotron Radiation Source	
VI-G-1 Superexcitation and Subsequent Decay of Triatomic Molecules	
Studied by Two-Dimensional Photoelectron Spectroscopy	153
VI-G-2 Photoelectron Spectroscopy of Atomic and Molecular Radicals	152
Prepared by RF Atom Source	133

	Development of a Laser-Synchrotron Radiation Combination Technique	
to	Study Photoionization of Polarized Atoms	
	VI-H-1 Laser Photoionization of Polarized Ar Atoms	
	Produced by Excitation with Synchrotron Radiation	154
	VI-H-2 Development of a New Angle-Resolved Energy Analyzer	
	for Photoelectron Spectroscopy of Polarized Atoms	154
	Vacuum UV Spectroscopy Making Use of a Combination of Synchrotron Radiation	
an	d a Mode-Locked or Pulsed UV Laser	
	VI-I-1 Rotational State Distribution of N ₂ ⁺ Produced from N ₂ or N ₂ O	1
371 T	Observed by a Laser-Synchrotron Radiation Combination Technique	133
V1-J	Monochromator Newly Developed on the Beam Line BL2B2 in UVSOR VI-J-1 Performance of the Dragon-Type Monochromator at UVSOR	156
	VI-J-1 Performance of the Dragon-Type Monochromator at UVSOR	130
	Excited with Synchrotron Radiation	156
VI_K	Thin Film Preparation with Chemical Vapor Deposition Using Vacuum Ultraviolet Radiation	.50
V 1-1X	VI-K-1 Silica Film Preparation by Chemical Vapor Deposition	1
	Using Vacuum Ultraviolet Excimer Lamps	157
	VI-K-2 Silica Film Preparation by Chemical Vapor Denosition	
	VI-K-2 Silica Film Preparation by Chemical Vapor Deposition Using Vacuum Ultraviolet Excimer Lamps	157
VI-L	Ultraviolet, Visible and Infrared Spectroscopy of Solids	
	VI-L-1 Performance of IR-VUV Normal Incidence Monochromator Beamline at UVSOR	158
	VI-L-2 Pseudogap Formation in the Intermetallic Compounds ($Fe_{1-x}V_x$) ₃ Al	
VI-M	Dynamics and Relaxation of Atoms and Molecules Following Core-Level Excitation	
	VI-M-1 Site-Specific Phenomena in Si:2p Core-Level Photoionization of X ₃ Si(CH ₂) _n Si(CH ₃) ₃	
	(X = F or Cl, n = 0-2) Condensed on a Si(111) Surface	159
	VI-M-2 Site-Specific Fragmentation Following C:1s Core-Level Photoionization	
	of 1,1,1-Trifluoroethane Condensed on a Au Surface	
	and of a 2,2,2-Trifluoroethanol Monolayer Chemisorbed on a Si(100) Surface	159
	VI-M-3 Ion Desorption Induced by Core-Electron Transitions	
	Studied with Electron–Ion Coincidence Spectroscopy	159
	VI-M-4 Electron—Ion Coincidence Study for the TiO ₂ (110) Surface	160
	VI-M-5 Development of Electron-Ion Coincidence Spectroscopy	
	for Study of Vapor-Phase Dynamics	160
	VI-M-6 High-Resolution Angle-Resolved Ion-Yield Measurements of H ₂ O and D ₂ O in the Region of O 1s to Rydberg Transitions	160
	VI-M-7 Molecular Deformation in the O 1s ⁻¹ $2\pi_u$ Excited States of CO ₂	100
	Probed by the Triple-Differential Measurement of Fragment Ions	160
	VI-M-8 Resonant Auger Spectrum Following Kr:2p \rightarrow 5s Photoexcitation	160
	VI-M-9 Angle-Resolved Electron and Ion Spectroscopy Apparatus	100
	on the Soft X-Ray Photochemistry Beamline BL27SU at SPring-8	161
	VI-M-10 Monochromator for a Soft X-Ray Photochemistry Beamline BL27SU of SPring-8	161
VI-N	Study on RF-Photocathode for Compact X-Ray Sources	. 01
	VI-N-1 Preliminary Study on Photoemission from Cesium Telluride	
	Irradiated by Polarized Photon	162
	•	
RESEAR	RCH ACTIVITIES VII1	63
~ -		
Coord	ination Chemistry Laboratories	
VII-A	New Insight into Mechanism of Oxygen Activation in Biological Oxygenases	
	VII-A-1 Interaction between a Copper(II) Compound and Protein	
	Investigated in terms of the Capillary Electrophoresis Method	163
	VII-A-2 Contribution of a Metal-Peroxide Adduct to Neurodegeneration is	
	due to its Oxidase Activity	163
	VII-A-3 DNA Promotes the Activation of Oxygen Molecule	1.62
	by Binuclear Cobalt(II) Compounds	103
	VII-A-4 Structure and Function of "Free Iron Ion" in Biological System and Their Model Compounds	161
	VII-A-5 New Insight into Oxidative DNA Cleavage Reaction Catalyzed by Metal Chelates	104 164
	VII-A-5 New Insight into Oxidative DNA Cleavage Reaction Catalyzed by Metal Cherates VII-A-6 Cleavage of C–N bond of Peptide Group by Copper(II)-peroxide Adduct	.04
	with η^1 -Coordination Mode	164
	VII-A-7 Important role of Proton in Activation of Oxygen Molecule	. 54
	in Heme-Containing Oxygenases	164

VII-B Electronic Structure and Reactivity of Metal Cluster Complexes	
VII-B-1 A One-Step Synthesis of an Ir(II) Dinuclear Complex. Preparation, Structures	
and Properties of Bis(μ-acetato)dichlorodicarbonyldiiridium(II) Complexes	-166
VII-B-2 Preparation and Structure of Bis(µ-acetato)dichlorodicarbonyldiiridium(II) Complexes	
with group 15 ligands, $[Ir_2(\mu-O_2CMe)_2Cl_2(CO)_2L2]$ (L = PPh ₃ , PCy ₃ , P(OPh) ₃ , AsPh ₃ , SbPh ₃	
and ESR and DFT Studies of Electronic Structure of Their Cationic Ra	-166
VII-C Research on the Relationship between Structure of Vanadyl Complex	
and Insulin-Mimetic Activity	
VII-C-1 Stereospecific and Structure-Dependent Insulin-Mimetic Oxovanadium(IV) Complexes	1.7
with N,N'-Ethylene-bis-amino Acids	-16/
VII-C-2 A New Type of Orally Active Insulin-Mimetic Vanadyl Complex:	167
Bis(1-oxy-2-pyridinethiolate)oxovanadium(IV) with VO(S ₂ O ₂) Coordination ModeVII-C-3 Evidence for the Improvement of Noninsulin-Dependent Diabetes Mellitus in KKAy Mi	
with Daily Oral Administration of Bis(6-methylpicolinato)oxovanadium(IV) Complex	
VII-C-4 In vivo Coordination Structural Changes of a Potent Insulin-Mimetic Agent,	-107
Bis(picolinato)oxovanadium(IV),	
Studied by Electron Spin-Echo Envelope Modulation Spectroscopy	-167
VII-C-5 Role of Vanadium in Treating Diabetes	-168
VII-C-6 Ternary Complex Formation between VO(IV)-picolinic Acid	100
or VO(IV)-6-Methylpicolinic Acid and Small Blood Serum Bioligands	-168
VII-D-7 An Orally Active Antidiabetic Vanadyl Complex, Bis(1-oxy-2-pyridinethiolato)oxo-	
vanadium (IV), with VO(S ₂ O ₂) Coordination Mode; <i>In vitro</i> and <i>In vivo</i> Evaluation in Rats	-168
VII-C-8 Interaction of Vanadyl Complexes with Biological Systems:	
Structure-Insulinomimetic Activity Relationship of Vanadyl-Picolinate Complexes	-169
VII-C-9 Synthesis of New Vanadyl Complexes of Hydroxyazine-Type Heterocycles	
and Their Insulin-Mimetic Activities	
VII-C-10 Speciation of Insulin-Mimetic VO(IV)-Containing Drugs in Blood Serum	-169
VII-D Syntheses of Transition Metal-Sulfur Clusters and Development of Their Catalysis	
VII-D-1 Syntheses of a Dinuclear Ir Complex Containing Bridging Tetraselenide Ligands	150
[(C ₅ Me ₅)Ir(μ–Se ₄) ₂ Ir(C ₅ Me ₅)] and its Conversion into Ir ₂ Pd ₂ Se ₃ and Ir ₂ Pd ₃ Se ₅ Clusters	-170
VII-D-2 Preparation of Sulfido-Bridged Di- or Trinuclear Pyrrolylimido	170
and Diazoalkane Complexes Derived from a Tungsten Dinitrogen Complex	-1/0
VII-E Reductive Activation of Carbon Monoxide derived from Carbon Dioxide and Oxidative Activation of Hydroxy- and Oxo-Groups Derived from Water	
VII-E-1 Oxidation of Hydrocarbon by Mono- and Dinuclear Ruthenium Quinone Complexes	
via Hydrogen Atom Abstraction	_171
VII-E-2 Electrochemical Water-Oxidation to Dioxygen	1,1
Catalyzed by Oxidized Form of Bis(ruthenium-hydroxo) Complex in H ₂ O	-171
VII-E-3 Selective Production of Acetone in Electrochemical Reduction of CO ₂	
Catalyzed by Ru-naphthyridine Complex	-172
	· , —
VII-E-4 Energy Conversion from Proton Gradient to Electricity	
VII-E-4 Energy Conversion from Proton Gradient to Electricity Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172
Based on Characteristic Redox Behavior of an Aqua Ruthenium ComplexVII-E-5 Double Addition of CO ₂ and CH ₃ OH to Ruthenium Carbonyl Complex with Novel Mono-dentate Dithiolene	-172
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex VII-E-5 Double Addition of CO ₂ and CH ₃ OH to Ruthenium Carbonyl Complex with Novel Mono-dentate Dithiolene VII-E-6 Structural and Spectroscopic Characterization of Ruthenium(II) Complexes with Methyl, Formyl and Acetyl Groups as Model Species in Multi-Step CO ₂ Reduction	-172 -172 -173
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons -174
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons -174
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons -174
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons -174
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons -174
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons -174
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons -174 -174
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons -174 -174 -174
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons -174 -174 -174
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex VII-E-5 Double Addition of CO ₂ and CH ₃ OH to Ruthenium Carbonyl Complex with Novel Mono-dentate Dithiolene VII-E-6 Structural and Spectroscopic Characterization of Ruthenium(II) Complexes with Methyl, Formyl and Acetyl Groups as Model Species in Multi-Step CO ₂ Reduction VII-F Synthesis of Transition-Metal Chalcogenido Complexes and Their Cluster-Forming Reactio VII-F-1 Synthesis of Bis{(2-dimthylphenylphosphino)ethane-1-thiolato}bis(tert-butylthiolato)- molybdenum(IV) and Its Cluster-Forming Reactions with FeCl ₂ and CuBr VII-F-2 Synthesis and Structure of a Triply-Fused Incomplete-Cubane Cluster [{(η ⁵ -C ₅ Me ₅)WS ₃ } ₃ Cu ₇ (MeCN) ₉](PF ₆) ₄ and a 2D Polymer [(η ⁵ -C ₅ Me ₅)WS ₃ Cu ₃ (MeCN)(pz)]PF ₆ (pz = pyrazine)	-172 -172 -173 ons -174 -174 -174
Based on Characteristic Redox Behavior of an Aqua Ruthenium Complex	-172 -172 -173 ons -174 -174 -174

VII-G-4 Cyclodextrin-Appended Myoglobin as a Tool for Construction	
of a Donor-Sensitizer-Acceptor Triad on a Protein Surface	177
RESEARCH ACTIVITIES VIII	-179
Laser Research Center for Molecular Science	
VIII-A Developments and Researches of New Laser Materials	
VIII-A-1 Intense THz Radiation from Femtosecond Laser Pulses Irradiated InAs	
in a Strong Magnetic Field	179
VIII-A-2 High-Repetition-Rate, High-Average-Power Mode-Locked Ti:Sapphire Laser	170
with an Intracavity cw-Amplification Scheme	179
VIII-A-3 Compact THz-radiation Source Consisting of a Bulk Semiconductor, a Mode-Locked Fiber Laser, and a 2-T Permanent Magnet	180
VIII-A-4 Spectrum Control of THz Radiation from InAs in a Magnetic Field	100
by Duration and Frequency Chirp of the Excitation Pulses	180
VIII-A-5 LiCAF Crystal as a New Vacuum Ultraviolet Optical Material	
with Transmission Down to 112 nm	181
VIII-A-7 THz Radiation from Intracavity Saturable Bragg Reflector in Magnetic Field	101
with Self-Started Mode-Locking by Strained Saturable Bragg Reflector	181
VIII-A-8 High-Gain, Reflection-Double Pass, Ti:Sapphire Continuous-Wave Amplifier Delivering 5.77 W Average Power, 82 MHz Repetition Rate, Femtosecond Pulses	101
VIII-B Development and Research of Advanced Tunable Solid State Lasers	101
VIII-B-1 Performance of Widely Tunable Yb:YAG Microchip Lasers	182
VIII-B-2 High Average Power Diode-Pumped Composite Nd:YAG Laser	
with Cr ⁴⁺ :YAG Saturable Absorber for Passive Q-Switching	182
VIII-B-3 Optical Properties and Laser Characteristics	
of Highly Nd ³⁺ -Doped Y ₃ Al ₅ O ₁₂ Ceramics	183
VIII-B-4 Development of Multifunction Nonlinear Optical Wavelength Converter	184 197
VIII B 5 Terrodical Twinning in Crystal Quartz for Orthwrolet (Volumeal Optics	104
Research Center for Molecular Materials	
VIII-C Development of Novel Heterocyclic Compounds and Their Molecular Assemblies	
for Advanced Materials	100
VIII-C-1 Preparation of New TTF Vinylogues Containing Substituents at the Vinyl PositionsVIII-C-2 Preparation, Structure, and Properties of 1,3-Bis(1,4-dithiafulven-6-yl)azulenes	186 186
VIII-C-2 Freparation, Structure, and Froperities of 1,3-Bis(1,4-didinardiven-o-yr)azurenes VIII-C-3 Synthesis and Characterization of Novel Strong Electron Acceptors:	100
Bithiazole Analogues of Tetracyanodiphenoquinodimethane (TCNDQ)	186
VIII-C-4 Heterocyclic TCNQ Analogues Containing Thiophene and Benzothiadiazole Units	187
VIII-C-5 Crystal Engineering in π -Overlapping Stacks:	
Unusual One- and/or Two-Dimensional Stacking of π -System	
in the Crystal Structure of the Cation Radical Salts of Tetrathiafulvalene Vinylogues	187
VIII-C-6 One-Dimensional Supramolecular Tapes	
in the Co-Crystals of 2,5-Dibromo-3,6-dihydroxy-1,4-benzoquinone (Bromanilic Acid) with Heterocyclic Compounds Containing a Pyrazine Ring Unit	188
VIII-C-7 A Decamethylferrocene [Fe(C ₅ Me ₅) ₂] and Chloranilic Acid (CA) Complex	100
with Hydrogen Bonded Supramolecular Structure between CA and H ₂ O	188
VIII-C-8 New Hydrogen Bond Donor-Acceptor Pairs	
between Dipyridylacetylenes and 2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone	188
VIII-C-9 Novel Synthetic Approach to 5–10 nm Long Functionalized Oligothiophenes	188
VIII-D Electronic Structures and Rectivities of Active Sites of Metalloproteins	
VIII-D-1 Resonance Raman Spectra of Legitimate Models for the Ubiquitous Compound I Intermediates of Oxidative heme Enzymes	100
VIII-D-2 Spin Distribution in Low-Spin (meso-Tetraalkylporphyrinato)iron(III) Complexes with	190 th
(dxz,dyz) ⁴ (dxy) ¹ Configuration. Studies by ¹ H-NMR, ¹³ C-NMR, and EPR Spectroscopies -	
VIII-D-3 Post-Assembly Insertion of Metal Ions into Thiol-Derivatized Porphyrin Monolayers	-, -
on gold	190
VIII-D-4 Electron Spin-Echo Envelope Modulation Spectral properties	
of Amidate Nitrogen Coordinated to Oxovanadium(IV) Ion	191
VIII-D-5 Newly Designed Iron-Schiff Base Complexes as Models of Mononuclear Non-Heme Iron Active Sites	101
as Models of Mononuclear Non-Heme Iron Active SitesVIII-D-6 Synthesis and Characterization of High Valent Iron Porphyrin Complexes	191
as Models for Reaction Intermediates of Cytochrome c Oxidase	191

VIII-E Molecular Mechanism of Heme Degradation and Oxygen Activation by Heme Oxygena VIII-E-1 Participation of Carboxylate Amino Acid Side Chain in Regiospecific Oxidation of	
by Heme Oxygenase	192
VIII-F Designing Artificial Photosynthesis at Molecular Dimensions	
VIII-F-1 Porphyrin Catalyzed Reductive Silvlation and Acylation of Ouinones	
under Irradiation of Visible Light	193
VIII-G Development of New Metal Complexes as Redox Catalysts	
VIII-G-1 Synthesis of Terpyridine-Based Binary Ligands and Their Metal Complexes	193
VIII-H Development of Organic n-Type Semiconductors for Molecular Thin-Film Devices	
VIII-H-1 Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers	105
OI Perfluorinated Phenylene Dendrimers	195
VIII-H-2 Perfluorinated Oligo(<i>p</i> -Phenylene)s: Efficient n-Type Semiconductors for Organic Light-Emitting Diodes	105
VIII-I The Effects of the 2D Spin-Echo NMR Experiment on a Solid-State Homonuclear Sipn-	193 .1/2 Pair
VIII-I-1 Real Figure of Two-Dimensional Spin-Echo NMR Spectra	-1/2 1 an
for a Homonuclear Two-Spin System in Rotating Solids	196
VIII-J The Applications of Double-Rotation NMR Method	170
VIII-J-1 The Observation of REDOR Phenomenon for CH_x ($x \ge 2$) Spin Systems under DOR	:196
Equipment Development Center	
VIII-K Development of "IMS Machines"	
VIII-K-1 Vacuum-Chamber-Based High Voltage Application Apparatus	
to Fabricate Wide-Range Nonlinear Optical Wavelength Converters	197
VIII-L Development of New Laser Materials	
VIII-L-1 Deep-Ultraviolet Uight Amplification within a Nanometer-Sized Layer	199
Ultraviolet Synchrotron Orbital Radiation Facility	
VIII-M Development of the UVSOR Light Source VIII-M-1 New Lattice for UVSOR	200
VIII-M-2 Development of Longitudinal Feedback System	
for a Storage Ring Free Electron Laser	200
VIII-N Researches by the USE of UVSOR	_00
VIII-N-1 Photoelectron Spectroscopic Study on Photo-Induced Phase Transition	
in a Spin Crossover Complex [Fe(2-pic) ₃]Cl ₂ EtOH	200
VIII-N-2 Photo-Induced Change in Semiconductor-Vacuum Interface of p-GaAs(100)	
Studied by Photoelectron Spectroscopy	200
VIII-N-3 Excitation Spectra of a Long-Persistent Phosphor SrAl ₂ O ₄ :Eu,Dy	
in Vacuum Ultraviolet Region	200
VIII-N-4 Two-Dimensional Imaging Technique for Measuring Translational Energy and Angular Distribution of Ionic Photofragments	201
and Angular Distribution of Ionic Phototragments	201
VIII-N-5 Angular Distribution Measurement of Auger Electrons from Fixed in Space Molecu VIII-N-6 Construction of a Varied-Line-Spacing Plane Grating Monochromator at BL-4B	
vini-N-o Construction of a variety-line-spacing Frame Grating Monochiomator at BL-4B	201
Computer Center	
VIII-O Theoretical Studies on Electronic Structure and Dynamics of Electronically Excited St	ates in
Polyatomic Molecules	
VIII-O-1 Theoretical Study of the Potential Energy Surfaces and Bound States of HCP	202
VIII-O-2 A Comparative Study of the Quantum Dynamics and Rate Constants	
of the O(³ P) + HCl Reaction Described by Two Potential Surfaces	202
VIII-O-3 Determination of the Global Potential Energy Surfaces for Polyatomic Systems	
VIII-O-4 Semiclassical Study of Nonintegrable Systems	202
VIII-O-5 Development of ab initio MD Method	
Based on the Direct Evaluation of CAS-SCF Energy Derivatives	203
RESEARCH FACILITIES	205
Laser Research Center for Molecular Science	
Research Center for Molecular Materials	
Equipment Development Center	
Ultraviolet Synchrotron Orbital Radiation Facility	205
Computer Center	
SPECIAL RESEARCH PROJECTS	209
(a) Chemical Reaction Dynamics	-
Folding Mechanism of Protein Molecules Studied by Generalized-Ensemble Algorithms	2(19

Development and Applications of Basic Theories for Chemical Reaction Dynamics and Their Control	200
and Their Control	209
A Minimalist Model	209
Constructing Molecular Theory of Chemical Processes in Solution	210
Imaging of Chemical Dynamics	
Electronic Structure and Decay Mechanism of Inner-Shell Excited Molecules	
Time-Resolved Spectroscopic Study of Photochemical Dynamics in Condensed Phase	
Production of Optical Knife—Site-Specific Fragmentation Following Core-Level Photoexcitation	n 211
Theoretical Study on the Unimolecular Reaction Dynamics	211
of Acetyl Radical CH ₃ CO \rightarrow CH ₃ + CO	211
(b) Molecular Photophysics and Science (1) Laser Cooling and Trapping of Metastable Helium Atoms	212
(1) Laser Cooling and Trapping of Metastable Helium Atoms(2) Laser Spectroscopic Studies of Atoms and Ions in Liquid Helium	·212
Structures of Reaction Intermediates of Bovine Cytochrome c Oxidase	212
Probed by Time-Resolved Vibrational Spectroscopy	212
Laser Raman Beat Detection of Magnetic Resonance	212
Structure, Relaxation and Control of Reactive Cluster Studied by Two-Color Laser Spectroscopy	v 212
SR-Pump and Laser-Probe Experiments for the Photofragmentation Dynamics of Molecules	
Electronic Structure and Optical Properties of III-V Nitrides	215
Decay and Dissociation Dynamics of Core Excited Molecules	215
(c) Novel Material Science	
Theory of Electronic Phases in Molecular Conductors and Insulators:	
Electron Correlations and Dimensional Crossovers	216
Size-Controlled Synthesis of Colloidal Metal Clusters	216
Spectroscopic and Physico-Chemical Studies of Organic Conductors	216
Broad-Line Solid State NMR Investigation of Electronic States in Molecular-Based Conductors	
Development of New Organic Conductors and Their Physical Properties	217
Construction of a Catalase Active Site by Site Directed Mutagenesis of Myoglobin Construction and Characterization of Chiral Molecule-Based Magnets in a Systematic Way	
STM Study on Synchrotron-Radiation Stimulated SiO2 Desorption on Si (111) Surface	
Design and Construction of UVSOR-BL4A2 Beam Line for Nano-Structure Processing	
Study on RF-Photocathode for Compact X-Ray Sources	
Reductive Activation of Metal-Carbonyl Complexes Derived from Carbon Dioxide	210
and Oxidative Activation of Metal-Hydroxy and -Oxo Complexes Derived from Water	219
Developments and Researches of New Laser Materials	219
New Advanced Organic Materials Based on Novel Heterocyclic Compounds	219
Molecular Mechanism of Oxygen Activation by Metalloenzymes	220
Generation of Reactive Species via Electron Transfer on Metal Complexes,	
as Basis of Chemical Energy Conversion Systems	220
Design and Synthesis of New Tellurium-Containing Donors	220
Ball on Disk Tribometer	220
Investigation of Dynamics on Photo-Excited Solids and Surfaces	221
by Using the Combination of Synchrotron Radiation and Laser	221
OKAZAKI CONFERENCES	.223
JOINT STUDIES PROGRAMS (1) Special Projects (2) Research Symposia (3) Cooperative Research (4) Use of Facility (5) UVSOR	225
FOREIGN SCHOLARS	233
AWARDS	237
LIST OF PUBLICATIONS	239
REVIEW ARTICLES AND TEXTBOOKS	
AUTHOR INDEX	

Abbrevations

IMS: Institute for Molecular Science GUAS: The Graduate University for Advanced Studies