IV-I Properties of Micropores in Single-Walled Carbon Nanotubes Studied by N₂ Gas Adsorption Isotherm Measurements

OGATA, Hironori; KUNO, Shogo 1; SAITO, Yahachi 1
(1 Mie Univ.)

The effects of heat treatments on the property of micropores have been studied on SWNTs by means of the N₂ adsorption isotherm measurements. SWNT samples used in this study were synthesized by the dc discharge method using non-ferromagnetic Pt-Rh mixed catalyst. Amorphous carbon and nano-graphite particles contained in the raw soots obtained were removed by modified Tohji’s procedure using hydrogen peroxide (H₂O₂), as follows: (1) The raw soots was heated at 100 °C for 10 hours in 20% H₂O₂ solution in a flask with reflux attachment to oxidize only the amorphous carbon uniformly. (2) The residual soots were added distilled water and was sonicated for 3 hours and collect the precipitate after leaving it for 12 hours to separate SWNTs and nano-graphite particles. Procedures (1)–(2) were repeated several times. The purification procedure was monitored and the purity of SWNTs were checked by both Scanning Electron Microscope and Powder X-ray diffraction measurements. The heat treatments were performed at 420 °C for 20 minutes in the dried air. Figure 1 shows the adsorption isotherms of N₂ on the as-prepared (LL), after H₂O₂-treated (G) and heat-treated (GG) SWNTs at 77 K. The adsorption isotherms are close to type II, which include features of a type I due to micropore fillings. Most distinguished feature is the large increase of the amount of N₂ gas adsorbed at low \(p/p_0 \) region. The high resolution \(\alpha_s \)-plot analysis revealed that the heat treatment increases the intensity of two upward swings (f- and c-swing) below \(\alpha_s = 1.0 \). This fact suggests that the heat treatment leads to the micropore filling and capillary-like condensation inside the tube space.

IV-I-2 Direct Evidence of Xenon Gas Adsorption Inside of Single-Walled Carbon Nanotubes Studied by \(^{129}\)Xe-NMR

OGATA, Hironori; KUNO, Shogo 1; SAITO, Yahachi 1
(1 Mie Univ.)

It is well known that \(^{129}\)Xe-NMR of xenon gas adsorbed in confined pore is essential way to investigate the pore structure. The most distinctive advantage of this technique is to detect only xenon gas confined in uniform pore and by analyzing the value of \(^{129}\)Xe chemical shift we can get the information about the size of the pore through the value of mean free path of xenon gas. Effects of heat treatments on the micropore structure of SWNTs were studied by \(^{129}\)Xe-NMR for xenon gas adsorbed SWNTs samples. Figure 1 shows the \(^{129}\)Xe-NMR spectra for the xenon gas adsorbed SWNTs samples both before and after heat treatment. Several kinds of gas adsorption isotherm measurements were also performed for both end-closed (capped) and end-opened (uncapped) SWNTs.
times’ treatments, (e): after three times’ treatments), which is caused by burning down the SWNTs. It was also confirmed by Raman scattering measurements. From the extrapolated value of the 129Xe shift at zero pressure ($\delta(S) = 75$ ppm) (Figure 2), we can conclude that the broad peak is attributed to the Xe gas confined inside the tube space.

Figure 1. 129Xe-NMR spectra for xenon gas adsorbed SWNTs after various treatments.

Figure 2. Pressure dependence of the xenon gas on 129Xe-NMR shift for xenon gas adsorbed SWNTs.

IV-J Electronic Properties of Pristine and Doped Single-walled Carbon Nanotubes Aggregates

13C NMR and Raman scattering measurements were performed for both pristine and doped single-walled carbon nanotubes (SWNTs) aggregates to investigate the electronic structure below 100 K.

IV-J-1 Electronic States of Single-Walled Carbon Nanotube Aggregates Studied by Low Temperature 13C-NMR

OGATA, Hironori; KUNO, Shogo1; SAITO, Yahachi1

(1Mie Univ.)

13C-NMR experiments have been carried out for single-walled carbon nanotubes aggregates (SWNTs), which were produced by using non-ferromagnetic Rh-Pt mixed catalysts. Hydrogen peroxide was used to remove amorphous carbon particles in the raw soot almost perfectly. Figure 1 shows the 13C NMR spectrum measured at 10 K. From the line shape analysis, the 13C spectrum is considered to be composed of two components with the shift tensors $(\delta_{11}, \delta_{22}, \delta_{33}) = (194, 182, 194)$ ppm and (203, 180, 52) ppm. To obtain more detailed information about the electronic state of SWNTs, we performed 13C spin lattice relaxation time (T_1) measurement by the saturation-recovery method. The obtained saturation recovery curves could be fit with a double-exponential function: approximately one-third of the 13C-nuclear spins relaxes much faster than the other two-thirds. Temperature dependence of 13C-T_1 found that both components follow a Korringa-like behavior ($T_1 \times T = 3100 \pm 500$ (sec.K) and $T_1 \times T = 12000$ (sec.K)) in the temperature region between 4.2 K and 100 K. The fast-relaxing and slow-relaxing components are thought to be associated with metallic and semiconducting SWNTs, respectively.

Figure 1. 13C NMR spectrum of SWNTs at 10 K.

IV-J-2 Electronic States of Alkali-Metal Doped Single-Walled Carbon Nanotube Aggregates

OGATA, Hironori; YAKUSHI, Kyuya; KUNO, Shogo1; SAITO, Yahachi1

(1Mie Univ.)
Electronic states of alkali-metal doped single-walled carbon nanotube aggregates (SWNTs) were studied by both 13C-NMR and Raman spectroscopy. The effects of opening the ends of SWNTs on the intercalation level and the evolution of electronic states were also studied. Dopings of alkali metals were performed for both pristine (capped) and open-ended (uncapped) SWNTs samples by two-bulb method. Raman scattering spectra of the tangential (E_{2g}) modes of SWNTs showed more downshift by using the SWNTs (uncapped) as a host sample. This result suggests that opening the ends lead to dope inside the tube and achieve higher doping level. Recovery of 13C-magnetization for pristine SWNTs was found to be able to fit with a double-exponential function. On the other hand, single exponential-like curve fitting can be reproduced the data points of 13C-magnetization curve for both K-doped SWNTs samples (Figure 1). Furthermore, The values of spin-lattice relaxation time (T_1) become shorter by K-dopings. Temperature dependence of 13C-nuclear spins relaxation found that both Br$_2$-doped samples follow a Korringa-like behaviors ($T_1 \times T = 950 \pm 200$ (sec.K) for capped sample and $T_1 \times T = 1550 \pm 250$ (sec.K) for uncapped) in the temperature region between 4.2 K and 100 K. This result suggests that cap-opening enables to achieve higher intercalation level. The value of density of states at Fermi level increases about 1.8 times as much as that of metallic tube for capped sample and 1.4 times for uncapped sample by Br$_2$-doping.

Figure 1. Recovery curve of 13C-NMR for pristine SWNTs (Δ), K-doped SWNTs (capped) (●) and K-doped SWNTs (uncapped) (○) measured at 25 K.

IV-K Structural and Electronic Properties of Fullerene-based Compounds

Structural and electronic properties were studied for several types of fullerene-based compounds in this project. Recently, Oszlanyi et al. found that Na$_4$C$_{60}$ forms two-dimensional polymeric phase of body-centered monoclinic (bcm: $I2/m$) at room temperature. The structure and electronic states of Na$_4$C$_{60}$ polymer phase were investigated by 13Mie Univ.)

Electronic states of Br$_2$ doped single-walled carbon nanotube aggregates (SWNTs) were studied by both 13C-NMR and Raman spectroscopy. The effects of opening the ends of SWNTs on the intercalation level and the evolution of electronic states were also studied. Doping of Br$_2$ was performed for both pristine (capped) and open-ended (uncapped) SWNTs samples by measuring the adsorption isotherm of Br$_2$ in-situ in order to control the doping level and obtain the information on the composition of the doped samples. For both samples, dopings of Br$_2$ were stopped when the micropore-fillings were completed. The compositions of the samples were evaluated to be (Br/C \approx 0.09 for capped sample and 0.2 for uncapped sample. Raman scattering spectra of the tangential (E_{2g}) modes of SWNTs showed more upshift by using the SWNTs (uncapped) as a host sample. This result suggests that opening the ends lead to dope inside the tube and achieve higher doping level. Recovery of 13C-magnetization for both Br$_2$-doped SWNTs was found to be able to fit with a single exponential-like function (Figure 1). Temperature dependence of 13C-nuclear spins relaxation found that both Br$_2$-doped samples follow a Korringa-like behaviors ($T_1 \times T = 950 \pm 200$ (sec.K) for capped sample and $T_1 \times T = 1550 \pm 250$ (sec.K) for uncapped) in the temperature region between 4.2 K and 100 K. This result suggests that cap-opening enables to achieve higher intercalation level. The value of density of states at Fermi level increases about 1.8 times as much as that of metallic tube for capped sample and 1.4 times for uncapped sample by Br$_2$-doping. Decrease in density of states by increase in the doping level is a characteristic nature of the electronic states of SWNTs.

Figure 1. Recovery curve of 13C-NMR for pristine SWNTs (Δ), Br$_2$-doped SWNTs (capped) (●) and Br$_2$-doped SWNTs (uncapped) (○) measured at 25 K.
The structure and electronic states of Na$_4$C$_{60}$ polymer phase were investigated by X-ray powder diffraction, ESR, electric resistivity and solid state 13C-NMR measurements. The spin susceptibility determined from ESR showed a rapid increase with a decrease in temperature from 100 to 50 K and a rapid decrease below 50 K. Further, the slope of plots of the peak-to-peak line width, ΔH_{pp}, versus temperature changes at 100 K. These results suggest the transformation of a Pauli paramagnetic state around 100 K. The lattice constants, a and b, determined from temperature dependent X-ray powder diffraction showed a discontinuous change around 50 K, while the c shows a continuous variation. The results suggest the structural transition around 50 K which may be associated with the transformation found by ESR. This transition can be attributed to the dimerization due to CDW or Spin-Peierls as in the case of CsC$_{60}$, because the ESR and the X-ray diffraction suggest the nonmagnetic ground state and the structural transition, respectively. New Bragg diffractions were not found below 100 K as in CsC$_{60}$. The resistivity at 300 K was $6.9 \times 10^3 \ \Omega \text{cm}$, which is larger than those of K$_3$C$_{60}$ and Rb$_3$C$_{60}$. The temperature dependence of the resistivity showed a semiconducting behavior from 300 to 190 K. The band gap energy, E_g, estimated from the resistivity was 0.8 eV, which is in agreement with those of K$_4$C$_{60}$ and Rb$_4$C$_{60}$. Figure 1 shows the temperature dependence of 13C-NMR spectrum for Na$_4$C$_{60}$. Appearance of a new peak at 70 ppm at low temperature suggests that existence of sp^3-like carbon in this compound. Temperature dependence of 13C-nuclear spin-lattice relaxation time didn’t follow a Korringa-like behavior in the temperature region between 300 K and 4.2 K, which suggests a nonmetallic behavior for Na$_4$C$_{60}$ polymer.

![Figure 1. Temperature dependence of 13C-NMR spectrum for Na$_4$C$_{60}$ polymer.](image-url)