VI-K Thin Film Preparation with Chemical Vapor Deposition Using Vacuum Ultraviolet Radiation

Thin-film deposition at temperatures as low as possible and without damages is one of the key technologies for fabrication of ultra-large scale integrated circuit (ULSI). Photon-assisted chemical vapor deposition is a promising way to prepare particularly dielectric thin-films. Silicon dioxide films have been prepared from tetraethoxyorthosilicate (Si-(OC_2H_5)_4) with chemical vapor deposition using vacuum ultraviolet radiation. The growth rate increases with decreasing the substrate temperature.

VI-K-1 Silica Film Preparation by Chemical Vapor Deposition Using Vacuum Ultraviolet Excimer Lamps

KUROSAWA, Kou; YANAGIDA, Hideaki¹; TAKEZOE, Noritaka; KAWASAKI, Yasuhiro¹; FUJITA, Masashi²; YOKOTANI, Atsushi² (¹IMS and Univ. Miyazaki; ²Univ. Miyazaki)

[*CLEO-2000* CMX4]

New scheme for silica film fabrication by a photochemical vapor deposition was developed by using excimer lamps in vacuum ultraviolet to ultraviolet spectral region. Smooth and uniform silica films were deposited at room temperature at a deposition rate of 1 nm/min.

VI-K-2 Silica Film Preparation by Chemical Vapor Deposition Using Vacuum Ultraviolet Excimer Lamps

KUROSAWA, Kou; YAKEZOE, Noritaka; YANAGIDA, Hideaki¹; MIYANO, Jyunichi²; MOTOYAMA, Yoshikazu²; TOSHIKAWA, Kiyohiko²; KAWASAKI, Yasuhiro¹; YOKOTANI, Atsushi³

(¹IMS and Univ. Miyazaki; ²Miyazaki OKI Electric; ³Univ. Miyazaki)

[European Materials Research Society Spring Meeting 2000, D-II-4]

We have prepared SiO₂ thin films on silicon wafers from tetraethoxyorthosilicate (TEOS; Si(OC₂H₅)₄) by photo-chemical vapor deposition with the use of various excimer lamps which emit incoherent light at 302 (XeCl), 222 (KrCl), 172 (Xe₂), 146 (Kr₂) and 126 nm (Ar₂). The film deposition is observed at wavelengths shorter than 172 nm. With 10-mW/cm² 172-nm radiation, the growth rate is 8 nm/min on the room temperature substrate. The deposition efficiency depends on the wavelength and shows the maximum value for 146-nm radiation. Addition of O₂ to TEOS induces inhibition of C and H impurity inclusion in the films.