VII-F Synthesis of Transition-Metal Chalcogenido Complexes and Their Cluster-Forming Reactions

Transition-metal chalcogenido aggregates are of well-documented importance in biological systems and industrial processes such as hydrodesulfurization. A wide variety of metal chalcogenido clusters have been synthesized, in which the tetrathiometalato anions have been widely used as a building block. In this project, we are focusing on preparation of chalcogenido/chalcogenolato complexes as a precursor for cluster syntheses and their cluster-forming reactions.

VII-F-1 Synthesis of Bis{(2-dimthylphenylphosphino)ethane-1-thiolato}bis(tertbutylthiolato)molybdenum(IV) and Its Cluster-Forming Reactions with FeCl₂ and CuBr

ARIKAWA, Yasuhiro¹; KAWAGUCHI, Hiroyuki; KASHIWABARA, Kazuo¹; TATSUMI, Kazuyuki¹ (¹Nagoya Univ.)

[Inorg. Chem. 38, 4549 (1999)]

The Mo(IV) complex $Mo(dmsp)(S^{t}Bu)_{2}$ (1) was readily prepared by the reaction of Mo(S^tBu)₄ with 2 equiv of HSCH₂CH₂PMe₂ (Hdmsp). The X-ray analysis of 1 reveals a distorted octahedral geometry with a cisdisposition of two ^tBuS ligands. Treatment of 1 with FeCl₂ and CuBr led to the formation of heterometallic clusters, [Mo(O)(dmsp)₂]₂FeCl₂ (2) and [MoBr(dmsp)₂- $(\mu_3-S)Cu_2]_2(\mu_2-S^tBu)_2$ (3), respectively. The oxo ligand in 2 is most probably derived from adventitious H_2O contained in hygroscopic FeCl₂. In the structure of **2**, an FeCl₂ unit bridges two square-pyramidal Mo(O)(dmsp)₂ fragments through interactions between iron and sulfur atoms of dmsp. The formation of 3 involves C-S bond cleavage of one 'BuS ligand of 1 and rearrangement of ligands between the Mo and Cu sites, resulting in the structure consisting of two MoCu2BrS(dmsp)2 units and two ^tBuS bridges.

Figure 1. Structure of 3.

VII-F-2 Synthesis and Structure of a Triply-Fused Incomplete-Cubane Cluster [{(η^5 -C₅Me₅)-WS₃}₃Cu₇(MeCN)₉](PF₆)₄ and a 2D Polymer [(η^5 -C₅Me₅)WS₃Cu₃(MeCN)(pz)]PF₆ (pz = pyrazine)

LANG, Jian-Ping¹; KAWAGUCHI, Hiroyuki; TATSUMI, Kazuyuki¹ (¹Nagoya Univ.)

[Chem. Commun. 2315 (1999)]

The reaction of (PPh₄)[Cp*W(S)₃] with 3 equiv of [Cu(MeCN)₄](PF₆) in MeCN yielded a triply-fused incomplete-cubane cluster [{(η^{5} -C₅Me₅)WS₃}₃Cu₇-(MeCN)₉](PF₆)₄ (**1**). Furthermore, we constructed a 2D polymeric structure [(η^{5} -C₅Me₅)WS₃Cu₃(MeCN)(pz)]-PF₆ (**2**) by treating **1** with pyrazine in the presence of LiCl. The W₃S₉Cu₇ framework of **1** is broken during the reaction with LiCl and pyrazine, providing a WS₃Cu₃ incomplete-cubane cluster as a building block of the stacked sheet structure of **2**.

Figure 1. Structure of 1.

VII-F-3 Synthesis and Structures of the Halfsandwich W(VI) Triselenido and W(II) Selenolato Complexes

KAWAGUCHI, Hiroyuki; TATSUMI, Kazuyuki¹ (¹Nagoya Univ.)

[Chem. Commun. 1299 (2000)]

The reaction of Cp*WCl₄ with LiSe^tBu at room temperature gave rise to a mixture of syn- and anti- $Cp*_2W_2(\mu-Se)_2(Se)_2$ (1), in which C–Se bond cleavage took place. When the similar reaction was carried out in the presence of ^tBuNC, the W(II) selenolato complex $Cp*W(Se^tBu)(CN^tBu)_3$ (2) was formed. The structure of 2 was confirmed by X-ray analysis. While two of the isocyanides are nearly linear $[C-N-C = 175.8(8)^{\circ}]$. 164.3(7)°], the other contains essentially an sp²-type nitrogen atom [N–C–N, 128.7(6)°] amongst the smallest of the known bent isocyanides (122-156°). In another experiment, a freshly prepared Cp*WCl₄/LiSe^tBu mixture was quickly transferred into Li₂Se₂ in THF. Cation exchange with PPh₄Br in CH₃CN provided $(PPh_4)[Cp*W(Se)_3]$ (3) concomitant with a mixture of syn- and anti-1. The anion part of 3 has a three-legged piano-stool structure. The average W-Se distance

(2.322 Å) of $\mathbf{3}$ is similar to that of $(PPh_4)_2[WSe_4]$.

Scheme 1. Reagents and condititons: i, Li₂Se₂, THF; ii, PPh₄Br, CH₃CN; iii, 30 min, -78 °C, THF; iv, Bu^tNC, THF.