VI-T Syntheses of Fullerene-Based New Materials with Novel Physical Properties

Fullerene-based new materials are synthesized, and the structures and physical properties are studied in wide temperature and pressure regions. The structures and transport properties of pressure-induced superconducting fulleride, Cs_3C_{60} , are studied by X-ray powder diffraction, ESR, Raman, AC susceptibility and resistivity measurements, in order to clarify the mechanism of pressure-induced superconductivity. The two-dimensional polymeric fulleride, Na_4C_{60} , is also studied in order to clarify the novel physical properties which are expected from its low-dimensionality. The structures and electronic properties of solid metallofullerenes are first clarified under high pressure, and the first evidence has been obtained for the endohedral structure and electron transfer from a metal atom to the C_{60} cage in metal endohedral C_{60} .

VI-T-1 Structure and Raman Scattering of Cs₃C₆₀ under High Pressure

FUJIKI, Satoshi; KUBOZONO, Yoshihiro; EMURA, Shuichi¹; TAKABAYASHI, Yasuhiro; KASHINO, Setsuo²; FUJIWARA, Akihiko³; ISHI, Kenji³; SUEMATSU, Hiroyoshi³; MURAKAMI, Yoichi⁴; IWASA, Yoshihiro⁵; MITANI, Tatsuoki⁵; OGATA, Hironori

(¹Osaka Univ.; ²Okayama Univ.; ³Univ. Tokyo; ⁴KEK-PF; ⁵JAIST)

[Phys. Rev. B 62, 5366 (2000)]

Raman scattering is studied for a pressure-induced superconductor Cs_3C_{60} in a pressure region from 1 bar to 62 kbar. The center frequency ω_0 for $H_g(1)$ and $H_g(2)$ Raman peaks increases by applying pressure, but the increase shows a saturation in the high-pressure region. On the other hand, the ω_0 for $A_g(1)$ and $A_g(2)$ modes increase monotonically in all pressure regions. The electron-phonon coupling constant for Cs_3C_{60} shows a rapid decrease up to 30 kbar and an increase above 30 kbar. This result may be associated with a transformation from a multiphase (body-centered orthorhombic and A15 phases) to a single phase around 20 kbar. Xray powder diffraction pattern at 11 K under a pressure of 40 kbar shows that a superconducting phase for Cs_3C_{60} is body-centered orthorhombic.

VI-T-2 Structure and Physical Properties of Na₄C₆₀ under Ambient and High Pressures

KUBOZONO, Yoshihiro; TAKABAYASHI, Yasuhiro; KAMBE, Takashi¹; FUJIKI, Satoshi; KASHINO, Setsuo¹; EMURA, Shuichi² (¹Okayama Univ.; ²Osaka Univ.)

[Phys. Rev. B 63, 45418 (2001)]

The structure and physical properties of twodimensional polymeric Na_4C_{60} (body-centered monoclinic, space group I2/m) are studied in a wide temperature region from 12 to 300 K at 1 bar, and in a pressure region up to 53 kbar at 300 K. The temperature dependence of lattice constants suggests a structural anomaly below 100 K where the variation of spin susceptibility is observed from electron spin resonance. The thermal expansion of the unit-cell volume V is smaller than that of monomeric Rb_3C_{60} and K_3C_{60} . The compressibility of *c* is larger than that of *a* and *b*, which can be well explained by the repulsion between Na ions. The compressibility of the center-to-center distance in the (101) plane is ~ 1/3 times smaller than that in the (101) plane, which can be well explained by the formation of the polymer chains. Further, a possibility of a three-dimensional polymerization is discussed on the basis of the pressure dependence of $\text{C}_{60} \cdots \text{C}_{60}$ distance.

VI-T-3 Structure of $La_2@C_{80}$ Studied by La K-Edge XAFS

KUBOZONO, Yoshihiro; TAKABAYASHI, Yasuhiro; KASHINO, Setsuo¹; KONDO, Masahiro²; WAKAHARA, Takatsugu²; AKASAKA, Takeshi³; KOBAYASHI, Kaoru⁴; NAGASE, Shigeru; EMURA, Shuichi⁵; YAMAMOTO, Kazunori⁶ (¹Okayama Univ.; ²Niigata Univ.; ³Univ. Tsukuba; ⁴Tokyo Metropolitan Univ.; ⁵Osaka Univ.; ⁶Power Reactor and Nuclear Fuel Department Corporation)

[Chem. Phys. Lett. 335, 163 (2001)]

The structure of La₂@C₈₀ is studied by La K-edge XAFS from 40 to 295 K. The distances between the La atom and the first nearest C atoms have been determined to be 2.42(1) Å at 40 K and 2.44(2) Å at 295 K, and those between the La atom and the second nearest C atoms to be 2.97(2) Å at 40 K and 2.98(3) Å at 295 K. The La–La distance has been determined to be 3.90(1) Å at 40 K and 3.88(2) Å at 295 K. The temperature dependence of the mean-square displacement of La–C is also studied to get an insight into the dynamical behavior of two La atoms in the C₈₀ cage.

VI-T-4 Structure and Electronic Properties of Dy@C₈₂ Studied by UV-VIS Absorption, X-Ray Powder Diffraction and XAFS

IIDA, Satoru¹; KUBOZONO, Yoshihiro; SLOVOKHOTOV, Yuri²; TAKABAYASHI, Yasuhiro; KANBARA, Takayoshi; FUKUNAGA, Takeo¹; FUJIKI, Satoshi; EMURA, Shuichi³; KASHINO, Setsuo¹

(¹Okayama Univ.; ²Russian Acad. Sci.; ³Osaka Univ.)

[Chem. Phys. Lett. 338, 21 (2001)]

Two isomers of Dy@C₈₂ were separated by high performance liquid chromatography (HPLC), and their UV-VIS absorption spectra were measured to characterize these isomers. The crystalline powder of Dy@C₈₂ was obtained by removing solvent (toluene) at 250 °C under vacuum. The X-ray diffraction pattern can be indexed with fcc crystal lattice, as that in La@C₈₂. The lattice constant *a* at 298 K, 15.86(1) Å, is close to that of La@C₈₂, 15.78 Å. The distances between Dy and the first and second nearest C atoms are determined to be 2.52(2) and 2.86(2) Å, respectively, on the basis of Dy L_{III}-edge EXAFS. The XANES shows that the valence of the Dy atom in Dy@C₈₂ is +3.

VI-T-5 Dy@C₆₀: Evidence for Endohedral Structure and Electron Transfer

KANBARA, Takayoshi; KUBOZONO, Yoshihiro; TAKABAYASHI, Yasuhiro; FUJIKI, Satoshi; IIDA, Satoru¹; HARUYAMA, Yusuke¹; KASHINO, Setsuo¹; EMURA, Shuichi²; AKASAKA, Takeshi³ (¹Okayama Univ.; ²Osaka Univ.; ³Univ. Tsukuba)

[Phys. Rev. B 64, 113403 (2001)]

In view of the lack of information on the structure of M@C₆₀ (M: alkaline earth and lanthanide metal) because of its instability and difficulties in purifying it, we have carried out and report here some structural investigations of Dy@C₆₀. We obtained a pure sample of Dy@C₆₀ by high performance liquid chromatography with aniline as an eluent, and studied it by Dy L_{III}-edge XAFS and Raman scattering. Our results show conclusively that the structure is endohedral (with the metal inside the C_{60} cage) and that electron transfer takes place between Dy and C_{60} . The Dy in Dy@C₆₀ is located at an off-center position, 1.25-1.30 Å, from the center of the C_{60} cage. The valence of the Dy is shown to be + 3 on the basis of a Dy L_{III}-edge XANES study. The $A_g(2)$ Raman peak also shows that three electrons have been transferred from Dy atom to the C_{60} cage. The UV-VIS-IR spectrum suggests that the HOMO-LUMO gap is small.