VII-F Synthesis of Transition-Metal Chalcogenido Complexes and Their Cluster-Forming Reactions

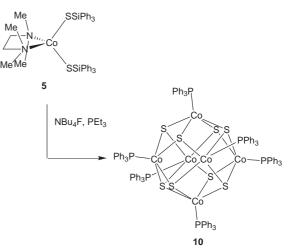
Transition-metal chalcogenido aggregates are of well-documented importance in biological systems and industrial processes such as hydrodesulfurization. A wide variety of metal chalcogenido clusters have been synthesized, in which the tetrathiometalato anions have been widely used as a building block. In this project, we are focusing on preparation of chalcogenido/chalcogenolato and silanechalcogenolato complexes as a precursor for cluster syntheses and their cluster-forming reactions.

VII-F-1 Synthesis of a Pentamethylcyclopentadienyl Complex of Tungsten with Three Different Chalcogenido (O²⁻, S²⁻, Se²⁻) Ligands

KAWAGUCHI, Hiroyuki; TATSUMI, Kazuyuki¹ (¹Nagoya Univ.)

[Angew. Chem., Int. Ed. Engl. 113, 1306 (2001)]

We have synthesized a pentamethylcyclopentadienyl complex of tungsten, [PPh₄][Cp*W(O)(S)(Se)] (3, Cp* $= \eta^5$ -C₅Me₅), in which three different chalcogenide ligands $(O^{2-}, S^{2-}, Se^{2-})$ are bound to the metal center. This unique mixed-chalcogenide complex is thermodynamically stable, and does not exhibit chalcogenexchange reactions in solution. The successful route to 3 begins with the high yield synthesis of [Cp*W(S)₂Cl] (4) attained by the reaction between $[Cp*WCl_4]$ and 1 equiv of Me₃SiSCH₂CH₂SSiMe₃. Addition of a small amount of H₂O to a THF solution of 4 under the presence of NEt₃ produced $[Cp*WS_2O]^-$ (5), which was then alkylated by CH₃I or PhCH₂Br to give [Cp*W(O)(S)(SR)] (R = CH₃ (6a), CH₂Ph (6b)). Finally, a terminal selenide was introduced by the reaction of **6a** or **6b** with Li₂Se₂ and PPh₄Br leading to the desired oxo/thio/seleno complex [PPh4][Cp*W(O)-(S)(Se)](3).



i) $H_2O/Et_3N / THF$, ii) PPh_4Br / CH_3CN iii) $PhCH_2Br$ or CH_3I / THF iv) Li_2Se_2 / THF

VII-F-2 Synthesis and Reactions of Triphenylsilanethiolato Complexes of Manganese(II), Iron(II), Cobalt(II), and Nickel(II)

KOMURO, Takashi¹; KAWAGUCHI, Hiroyuki; TATSUMI, Kazuyuki¹ (¹Nagoya Univ.)

Treatment of Fe[N(SiMe₃)₂]₂ with 1 and 2 equiv of Ph₃SiSH in hexane afforded [Fe{N(SiMe₃)₂}(µ-SSi-Ph₃)]₂ 1 and $[Fe(SSiPh_3)(\mu - SSiPh_3)]_2$ 2, respectively. Complex 2 reacted with Lewis bases to form the adducts $Fe(SSiPh_3)_2(L)_2$ [L = CH₃CN **3a**, 4-^tBuC₅H₄N **3b**, PEt₃ **3c**, $(L)_2$ = tmeda **3d**]. The reactions of M[N(Si- $Me_3)_2]_2$ (M = Mn, Co) with Ph₃SiSH in the presence of TMEDA gave rise to the corresponding silanethiolato complexes $M(SSiPh_3)_2(tmeda)$ (M = Mn 4, Co 5). The analogous reaction using [Ni(NPh₂)₂]₂ generated Ni(S-SiPh₃)₂(tmeda) 6. The reaction of **3a** with $(PPh_4)_2$ - $[MoS_4]$ produced the linear trinuclear complex $(PPh_4)_2$ - $[MoS_4{Fe(SSiPh_3)_2}_2]$ 7, while **3a** reacted with $(NEt_4)_2$ -[FeCl₄] to afford (NEt₄)₂[Fe₂(SSiPh₃)₂Cl₄] 8. The reaction of **3a** with [Cu(CH₃CN)₄](PF₆) gave the cyclic tetranuclear complex Cu₄(SSiPh₃)₄ 9, in which a ligand transfer reaction occurred. Finally, when 5 was treated with (NBu₄)F in THF containing PPh₃, silicon-sulfur bond cleavage took place to produce the cobalt-sulfido cluster $Co_6(\mu_3-S)_8(PPh_3)_6$ 10.

