Elucidation of a structure-function relationship of metalloproteins is a current subject of this group. The primary technique used for this project is the stationary and time-resolved resonance Raman spectroscopy excited by visible and UV lasers. The main themes that we want to explore are (1) mechanism of oxygen activation by enzymes, (2) mechanism of active proton translocation and its coupling with electron transfer, (3) coupling mechanism of proton-electron transfers by quinones in photosynthetic reaction center, (4) higher order protein structures and their dynamics, and (5) reactions of biological NO. In category (1), we have examined a variety of terminal oxidases, cytochrome P450s, and peroxidases, and also treated their enzymatic reaction intermediates by using the mixed flow transient Raman apparatus and the Raman/absorption simultaneous measurement device. For (2) the third generation UV resonance Raman (UVRR) spectrometer was constructed and we are going to apply it to a giant protein like cytochrome c oxidase. More recently, we succeeded in pursuing protein folding of apomyoglobin by combining UV time-resolved Raman and rapid mixing device. In (3) we succeeded in observing RR spectra of quinones A and B in bacterial photosynthetic reaction centers for the first time, but we have focused our attention on detecting tyrosine radical for the P intermediate of terminal oxidases. Some positive evidence was obtained for cytochrome bo. For (4) we developed a novel technique for UV resonance Raman measurements based on the combination of the first/second order dispersions of gratings and applied it successfully to 235-nm excited RR spectra of several proteins including mutant hemoglobins and myoglobins. Nowadays we can carry out time-resolved UVRR experiments with nanosecond resolution to discuss protein dynamics. With the newly developed third generation UV Raman spectrometer, we have succeeded in isolating the spectrum of tyrosinate in ferric Hb M Iwate, which was protonated in the ferrous state, and the deprotonated state of Tyr244 of bovine cytochrome c oxidase. As a model of Tyr244, an imidazole-bound para-cresol was synthesized and its UV resonance Raman was investigated. For (5) we purified soluble guanlylate cyclase from bovine lung and observed its RR spectra. To further investigate it, we are developing an expression system of this protein.

IX-G-1 Presence of the Heme-oxo Intermediate in Oxygenation of Carbon Monoxide by Cytochrome c Oxidase Revealed by Resonance Raman Spectroscopy

KIM, Younkyoo1; SHINZAWA-ITOH, Kyoko2; YOSHIKAWA, Shinya3; KITAGAWA, Teizo
(1Hankuk Univ.; 2Himeji Inst. Tech.)

Resonance Raman and absorption spectra were examined for the species generated upon incubation of oxidized bovine cytochrome c oxidase at pH 8.0 with carbon monoxide in the presence or absence of O2. The anaerobic incubation yielded the CO isotope sensitive bands at 804 and 768 cm –1, at 517 and 578 cm –1 for 12 C 16 O, at 512 and 563 cm –1 for 12 C 18 O, and at 508 and 574 cm –1 for 13 C 16 O, at 503 and 557 cm –1 for 13 C 18 O, indicating the formation of heme a3–2+CO adduct. The aerobic incubation with CO employing both 16 O2 and 18 O2 yielded the oxygen isotope-sensitive bands at 804 and 768 cm –1, respectively. These bands were identified by excitation at 441.6 and 607 nm, a result which is consistent with the P intermediate of terminal oxidases.

IX-G-2 Protein Conformation Change of Myoglobin upon Ligand Binding Probed by Ultraviolet Resonance Raman Spectroscopy

Haruta, Nami1; Akiki, Michihiko2; Ozaki, Shinichi3; Watanabe, Yoshihito4; Kitagawa, Teizo
(1GUAS; 2Univ. Tokyo; 3Yamagata Univ.)

Conformational change of myoglobin (Mb) accompanied by binding of a ligand was investigated with the 244 nm-excited ultraviolet resonance Raman spectroscopy (UVRR). The UVRR spectra of native sperm whale (sw) and horse (h) Mbs and W7F and W14F swMb mutants for the deoxy and CO-bound states enabled us to reveal the UVRR spectra of Trp7, Trp14, and Tyr151 residues, separately. The difference spectra between the deoxy and CO-bound states reflected the environmental or structural changes of Trp and Tyr residues upon CO binding. W3 band of Trp7 near the N-terminus exhibited a change upon CO binding, while Trp14 did not. Tyr151 in the C-terminus also exhibited a definite change upon CO binding, but Tyr103 and Tyr146 did not. The spectral change of Tyr residues was characterized through solvent effects of a model compound. The corresponding spectral differences between CO- and n-butylisocyanide-bound forms were much smaller than those between the deoxy and CO-bound forms, suggesting that the conformation change in the C- and N-terminal regions is induced by the proximal side of heme through the movement of iron. Although the swinging up of His64 upon binding of a bulky ligand is noted by X-ray crystallographic analysis, UVRR spectra of His for n-butylisocyanide bound form did not detect the exposure of His64 to solvent.
IX-G-3 UV Resonance Raman Characterization of Model Compounds of Tyr244 of Bovine Cytochrome c Oxidase in Its Neutral-, Deprotonated Anion-, and Deprotonated Neutral Radical-Forms: Effects of Covalent Binding between Tyrosine and Histidine

AKI, Michihiko1; NARUTA, Yoshinori2; LE, T. Huu3; SATO, Teizi2; KITAGAWA, Teizo

(A1 Univ. Tokyo; 2Kyushu Univ.)

[J. Phys. Chem. in press]

A model compound of Tyr244-His240 of bovine cytochrome c oxidase was synthesized and examined with UV resonance Raman (UVR) as well as UV visible absorption spectroscopy and pH titration. Owing to the covalent linkage between imidazole and phenol, the pKa of phenolic OH and imidazolic N groups were lowered by 1.1 and 2.3, respectively. UVRR measurements of ortho-imidazole-bound para-cresol (Im•CrOH), its deprotonated anion (Im•CrO$^-$), and deprotonated neutral radical (Im•CrO*), and their imidazole perdeuterated, cresol perdeuterated, and 18O derivatives allowed assignments of Raman bands to the imidazole and phenol modes. Unexpectedly, some of imidazole vibrations were resonance enhanced upon $\pi\pi^*$ transition of phenol, although they were not observed for the corresponding equimolar mixture of imidazole and p-cresol, indicating delocalization of π electrons between the imidazole and phenol rings via the covalent linkage. Such features were appreciably changed by incorporation of a bulky group at imidazole C2 position, causing staggered conformation. The C-O stretching RR band was observed only for a radical state at 1530 cm$^{-1}$. γ8a band is not shifted upon deprotonation, although it was shifted by 12 cm$^{-1}$ for unmodified p-cresol. The UVRR difference spectra of the anion and phenol with regard to the neutral states are discussed in relation with the corresponding difference spectra of the enzyme.

IX-G-4 Synthesis, Structure, and H$_2$O$_2$-Dependent Catalytic Functions of Disulfide-Bridged Dicopper(I) and Related Thioether-Copper(I) and Thioether-Copper(II) Complexes

OHTA, Takehiro; TACHIYAMA, Takashi1; YOSHIZAWA, Kazunari1; YAMABE, Tokio1; UCHIDA, Takeshi; KITAGAWA, Teizo

(Kyoto Univ.)

[Inorg. Chem. 39, 4358 (2000)]

A disulfide-bridged dicopper(I) complex, [Cu$_2$-(Py$_2$SSPy$_2$)][ClO$_4$]$_2$ (I) (Py$_2$SSPy$_2$ = bis[2-(N,N-bis(2-pyridyl)ethyl)amino]-1,1-dimethylthyl]disulfide), a thioether-copper(I) complex, [Cu(Pr$^\prime$SP$_2$)][ClO$_4$] (2) (Pr$^\prime$SP$_2$ = N-(2-isopropylthio-2-methyl)propyl-N,N-bis-(2-pyridyl)ethylamine), and a thioether-copper(II) complex, [Cu(PheSP$_2$)(H$_2$O)][ClO$_4$]$_2$ (3) (PheSP$_2$ = N-(2-methyl-2-phenoxyethylthio)propyl-N,N-bis-(2-pyridyl)ethylamine), were newly synthesized by the reactions of Cu(ClO$_4$)$_2$·6H$_2$O with a thiol ligand of Py$_2$SH (N,N-bis[2-(2-pyridyl)ethyl]-1,1-dimethyl-2-mercaptoethylamine) and thioether ligands of Pr$^\prime$SP$_2$ and PheSP$_2$, respectively. For complexes 1 and 2, X-ray analyses were performed. Complex 1 crystallizes in the triclinic space group $P1$, and complex 2 crystallizes in the orthorhombic space group $Pbcn$ with the following unit cell parameters: for 1, $a = 15.165$ (3) Å, $b = 22.185$ (4) Å, $c = 14.989$ (3) Å, $\alpha = 105.76$ (1)$^\circ$, $\beta = 90.82$ (2)$^\circ$, $\gamma = 75.23$ (1)$^\circ$, and $Z = 2$; for 2, $a = 17.78$ (2) Å, $b = 17.70$ (1) Å, $c = 15.75$ (1) Å, and $Z = 8$. Complex 1 is the first structurally characterized example obtained by the redox reaction Cu(II) + RSH \rightarrow Cu(I) + RRSS and has two independent structures (1a, 1b) which mainly differ in S–S bond distances, Cu(I)–Cu(I) separations, and C–S–S–C dihedral angles of the disulfide units. The S–S bond distances of 2.088(7) Å in 1a and 2.070(7) Å in 1b are indicative of significant activation of the S–S bonds by the dicopper centers. Fragment molecular orbital (FMO) analyses and molecular orbital overlap population (MOOP) analyses based on the extended Hückel method clarify the preferable formation of the disulfide S–S bond in 1 rather than the formation of a thiolate-copper(II) complex within the Py$_2$S* ligand framework. Catalytic functions of complexes 1–3 were investigated with peroxides (H$_2$O$_2$ and BuOOH) as oxidants. Complex 1 catalyzed the selective oxidation of cyclohexane to cyclohexanol and mediated the cyclohexene epoxidation in the presence of H$_2$O$_2$. A transient dark green intermediate observed in the reaction of 1 with H$_2$O$_2$ is characterized by UV-vis, EPR, and resonance Raman spectroscopies, identifying it as a Cu(II)–OOH species, I(OOH). The resonance Raman features of the ν(O–O) bands at 822 and 836 cm$^{-1}$, which are red-shifted to 781 and 791 cm$^{-1}$, respectively, upon introduction of H$_2$18O$_2$, are indicative of formation of two kinds of Cu–OOH species rather than the Fermi doublet and the significant weakening of the O–O bonds. These mechanistic studies demonstrate that by virtue of the electron-donating ability of the disulfide unit the Cu–OOH species can be actually activated for one-electron oxidation, which has been reported so far unfavorable for other vibrationally characterized Cu–OOH species.

IX-G-5 UV Resonance Raman Detection of a Ligand Vibration on Ferric Nitrosyl Heme Proteins

TOMITA, Takeshi2; HARUTA, Nami2; AKI, Michihiko2; KITAGAWA, Teizo; IKEDA-SAITO, Masao3

(Tohoku Univ.; 2GUAS; 3Univ. Tokyo)

[J. Am. Chem. Soc. 123, 2666 (2001)]

The Fe$^{3+}$–nitric oxide (NO) complexes formed from the reactions of NO with heme proteins are of significant physiological relevance. Microbial denitrification catalyzed by cytochrome P_{450}nor, is initiated by the formation of a Fe$^{3+}$–NO complex. The delivery of NO by a blood-sucking insect, Rhodnius prolixus, to its victims is via the ferric, not ferrous, NO complex of nitrophorin. The affinity of NO for Fe$^{3+}$ is
much lower than that for Fe$^{2+}$, thereby facilitating the transfer of NO. While vibrational spectroscopy has been applied extensively to explore heme-ligand systems, its application to Fe$^{3+}$ heme-NO complexes has been scarce, primarily because of the weak vibrational signals from the NO moieties. Thus, the development of an efficient and highly sensitive method to detect the ligand vibrations in Fe$^{3+}$ heme NO complexes is necessary. Here, we report an innovative and highly sensitive UV resonance Raman spectroscopic method for detecting the NO stretching frequency of a variety of Fe$^{3+}$ NO heme proteins, including myoglobin (Mb), horseradish peroxidase (HRP), mammalian heme oxygenase isofrom 2 (HO-2), and FixLH.

IX-G-6 Elucidation of the Differences between the 430 and 455-nm Absorbing Forms of P450-Isocyanide Adducts by Resonance Raman Spectroscopy

TOMITA, Takeshi1; OGO, Seiji; EGAWA, Tsuyoshi; SHIMADA, Hideo2; OKAMOTO, Noriaki3; IMAI, Yoshio3; WATANABE, Yoshihito; ISHIMURA, Yuzuru2; KITAGAWA, Teizo1

(1)Tohoku Univ.; (2)Keio Univ.; (3)Osaka Prefecture Univ.)

Alkylisocyanide adducts of microsomal P450 exist in two interconvertible forms, each giving the Soret maximum around 430 or 455 nm. This is demonstrated with a rabbit liver P450402B4. Resonance Raman spectra of the 430 and 455 nm forms were examined with typical P450s of the two types as well as with P450 2B4, because the 430 nm form of P4502B4 is liable to change into P420. P450cam and P450nor were selected as a model of the 430 and 455 nm forms, respectively. For n-butyl isocyanide (CNBu) adduct, the Fe(II)–CNBu stretching band was observed for the first time at 480/467 cm$^{-1}$ for P450cam and at 471/459 cm$^{-1}$ for P450nor with their 13CNBu/13CNBu derivatives. For P450cam, another 13C-isotope sensitive bands were observed at 412/402, 844/835, and 940/926 cm$^{-1}$, but not with P450nor. The C–N stretching mode was identified by FTIR at 2116/2080 cm$^{-1}$ for P450cam and 2148/2108 cm$^{-1}$ for P450nor for the 12C/13C derivatives. These findings suggest that the binding geometry of isocyanide differs between the two forms, bent and linear structures for P450camCNBu and P450norCNBu, respectively. In contrast, in the ferric state, the Raman 13C isotopic frequency shifts and the IR C–N stretching frequencies (2213/2170 and 2215/2172 cm$^{-1}$) were similar between P450cam and P450nor, suggesting similar bent structures for both.

IX-G-7 Observation of an Isotope Sensitive Low Frequency Raman Band Specific to Metmyoglobin

HIROTA, Shun1; MIZOGUCHI, Yasutaka1; YAMAUCHI, Osamu2; KITAGAWA, Teizo1

(1)Nagoya Univ.; (2)Kansai Univ.)

An iron(III)-histidine stretching ($\nu_{\text{Fe-His}}$) Raman band is searched through isotope-sensitivity for low frequency resonance Raman bands of metMb, metHb, and its α and β subunits. A band at 218 cm$^{-1}$ of natural abundance metMb exhibited a low frequency shift for 15N-His-labeled metMb (~1.4 cm$^{-1}$ shift), while the strong porphyrin bands at 248 and 271 cm$^{-1}$ did not shift significantly. The frequency of the 218-cm$^{-1}$ band of metMb decreased by 1.6 cm$^{-1}$ in D$_2$O, probably due to N$_2$-deuteriation of the proximal His, in a similar manner to that of the $\nu_{\text{Fe-His}}$ band of deoxyMb in the D$_2$O. This 218-cm$^{-1}$ band was shifted slightly to a lower frequency in H$_2$O, whereas it did little upon 54Fe isotopic substitution (<0.3 cm$^{-1}$) presumably because of the six-coordinate structure. This band was absent for the hydroxymetMb and cyanometMb. For metHb and its α and β subunits, however, the frequencies of the band around 220 cm$^{-1}$ were not D$_2$O-sensitive. These results suggest an assignment of the band around 220 cm$^{-1}$ to a pyrrole tilting mode, which contains the Fe–His stretching character for metMb but not for metHb and its subunits. The differences in the isotope-sensitivity of this band in different proteins are considered to reflect the heme structure including the Fe–His geometry specific to individual proteins.

IX-G-8 A Novel Diiron Complex as a Functional Model for Hemerythrin

ARII, Hidekazu1; NAGATOMO, Shigenori; KITAGAWA, Teizo; MIWA, Tomohiro2; IJITSUKAWA, Koichiro; EINAGA, Hisahiko1; MASUDA, Hideki1

(1)Nagoya Inst. Tech.)

Diiron(II) complexes with a novel dinucleating polypyrrole ligand, N,N,N′,N′-tetrakis(6-pivalamido-2-pyridylmethyl)-1,3-diaminopropan-2-ol (HTPDDO), were synthesized as functional models of hemerythrin. Structural characterization of the complexes, [Fe$_{2}$(Htppdo)(PhCOO)](13COO)$_{3}$ (1), [Fe$_{2}$(Htppdo)(p-CI-PhCOO)](13COO)$_{3}$ (2), [Fe$_{2}$(Htppdo)(p-ClPhCOO)](13COO)$_{3}$ (2'), [Fe$_{2}$(Htppdo)(p-ClPhCOO)](13COO)$_{2}$ (3), were accomplished by electronic absorption, and IR spectroscopic, electrochemical, and X-ray diffraction methods. The crystal structures of 1 and 2' revealed that the two iron atoms are asymmetrically coordinated with HTPPDO and bridging benzene. One of the iron centers (Fe(1)) has a seven-coordinate capped octa heedral geometry comprised of an N$_4$O$_4$ bridge and its sub-units, however the frequencies of the band around 220 cm$^{-1}$ were not D$_2$O-sensitive. These results suggest an assignment of the band around 220 cm$^{-1}$ to a pyrrole tilting mode, which contains the Fe–His stretching character for metMb but not for metHb and its subunits. The differences in the isotope-sensitivity of this band in different proteins are considered to reflect the heme structure including the Fe–His geometry specific to individual proteins.
Model complexes of the active site of galactose oxidase (GAO) have been developed using a new ligand carrying two different phenol groups, N-[(2-hydroxy-3-methylthio-5-tert-butylphenyl)methyl]-N-[(2-hydroxy-3,5-di-tert-butylphenyl)methyl]-2-(2-pyridyl)ethylamine (L1H2). Deprotonated ligand L12– forms a dimeric Cu(II) complex, [Cu(II)(L12–)2], in the solid state, the structure of which has been determined by X-ray crystallographic analysis. The dimeric Cu(II)-diphenolate complex can be converted into the monomeric complex, [Cu(II)(L12–)(X)] (X = py, AcO, and PhCH2OH), in solution by adding exogenous ligands such as pyridine (py), acetate (AcO–), or benzyl alcohol (PhCH2OH). The structure and physicochemical properties (UV-Vis, ESR, redox potential) of [Cu(II)(L12–)(X)] have been explored as a model for the resting state of the enzyme. One-electron oxidation of [Cu(II)(L12–)(py)] and [Zn(II)(L12–)(py)] by (NH4)2-[CeIV(NO3)6] (CAN) yielded the corresponding phenoxyl radical/phenolate complexes, Cu(II)[(L1–) (py)] and Zn(II)[(L1–)(py)] respectively, which have also been characterized by UV-Vis, resonance Raman, and ESR. The structure, physicochemical properties and reactivities of the diphenolate and phenoxyl radical/phenolate complexes of LH2 are compared to those of the corresponding monophenol and monophenoxyl radical complexes in order to obtain further insight into the role of Tyr 495 in the native enzyme.
and the integer spin system at the binuclear center showed slight differences. RR spectra of the oxidized form showed that heme O was in a 6-coordinated high-spin ($\nu_3 = 1472$ cm$^{-1}$), and heme B was in a 6-coordinated low-spin ($\nu_3 = 1500$ cm$^{-1}$) state. The Fe$^{2+}$–His stretching mode was observed at 211 cm$^{-1}$, indicating that the Fe$^{2+}$–His bond strength is not so much different from those of SoxM-type oxidases. On the contrary, both the Fe$^{2+}$–CO stretching and Fe$^{2+}$–C–O bending modes differed distinctly from those of SoxM-type enzymes, suggesting some differences in the coordination geometry and the protein structure in the proximity of bound CO in cytochrome b_0 from those of SoxM-type enzymes.

IX-G-12 First Synthetic NO-Heme-Thiolate Complex Relevant to Nitric Oxide Synthase and Cytochrome P450nor

Suzuki, Noriyuki1; Higuchi, Tsunehiko1; Urano, Yasuteru1; Kikuchi, Kazuya1; Uchida, Takeshi1; Mukai, Masahiro2; Kitagawa, Teizo1; Nagano, Tetsuo1

1Univ. Tokyo; 2RIKEN

![Annual Review 2001 219](https://example.com/annual-review-2001)

We have already succeeded in the synthesis of a stable FeIII-porphyrin-alkanethiolate complex, in which the sulfur atom is sterically protected from reactive molecules such as O$_2$ and NO by bulky groups. We report here some, spectroscopic and electrochemical properties of the first synthetic NO–heme–thiolate complex, prepared by the use of SR.

IX-G-13 Effects of a Thiolate Axial Ligand on the $\pi \rightarrow \pi^*$ Electronic States of Oxoferryl Porphyrins: A Study of the Optical and Resonance Raman Spectra of Compounds I and II of Chloroperoxidase

Egawa, Tsuyoshi1; Proshlyakov, A. Denis2; Miki, Hidehito1; Makino, Ryu3; Oghara, Takashi2; Kitagawa, Teizo1; Ishimura, Yuzuru1

1Keio Univ.; 2Michigan State Univ.; 3Zeon Kasei Co. Ltd.; 4Rikkyo Univ.; 5Univ. Tokyo

Optical absorption and resonance Raman spectra have been investigated for enzymatic intermediates, compounds I and II, of chloroperoxidase (CPO) which contains a thiolate-ligated iron porphyrin. Compound I of CPO (CPO-I), an oxoferryl porphyrin π cation radical, gave an apparently asymmetric single-peaked Soret band at 367 nm, for which band fitting analyses revealed the presence of two transition bands around 365 and 415 nm. Compound II of CPO (CPO-II), an oxoferryl neutral porphyrin, gave a split Soret spectrum with two bands (blue and red Soret bands) at 373 and 436 nm. Thus both CPO-I and CPO-II can be categorized as hyperporphyrins. The maximum extinction coefficients (ε_b and ε_r) and energies (E_b and E_r) of the blue and red Soret bands of CPO-II were found to fall on an $\varepsilon_b/\varepsilon_r$ versus E_b-E_r correlation line derived from data reported for six-coordinate ferrous derivatives of cytochrome P450 and CPO. Corresponding data for CPO-I did not fall on the correlation line. Resonance enhancement of the Fe$^{3+}$–O stretching ($\nu_{Fe=O}$) Raman band was found for CPO-I when Raman scattering was excited at wavelengths within both transition bands around 365 and 415 nm, while the $\nu_{Fe=O}$ Raman band was not identified for CPO-II at any of the excitation wavelengths examined here. These findings suggest that the thiolate axial ligand causes Soret band splitting of CPO-II through configuration interaction between the sulfur \rightarrow porphyrin π^* charge transfer and porphyrin a_{1u}, a_{2u} \rightarrow e^* transitions, while the FeO portion is important in determining the shape of the Soret band of CPO-I.

IX-G-14 Characterization of Imidazolate-Bridged Dinuclear and Mononuclear Hydroperoxo Complexes

Ohtsu, Hideki1; Itoh, Shinobu2; NAGATOMO, Shigenori; KITAGAWA, Teizo; OGO, Seiji1; Watanabe, Yoshihito1; FUKUZUMI, Shunichi1

1Osaka Univ.; 2Osaka City Univ.

Dinucleating ligands having two metal-binding sites bridged by an imidazolate moiety, Hbdpi, HMe$_2$bdpi, and HMe$_4$bdpi (Hbdpi = 4,5-bis(di(2-pyridylmethyl)imidazolylmethyl)imidazole, HMe$_2$bdpi = 4,5-bis(di(6-methyl-2-pyridylmethyl)2-pyridylmethyl)aminimidazole, HMe$_4$bdpi = 4,5-bis(di(6-methyl-2-pyridylmethyl)pyridylmethyl)aminimidazole), have been designed and synthesized as model ligands for copper-zinc superoxide dismutase (Cu, Zn–SOD). The corresponding mononucleating ligands, MeIm(Me)$_2$, MeIm(Me)$_2$, and MeIm(Me)$_2$ (MeIm(Me)$_2$ = (1-methyl-4-imidazolylmethyl)bis(2-pyridylmethyl)amine) have been designed and synthesized as model ligands for copper-zinc superoxide dismutase (Cu, Zn–SOD). The corresponding mononucleating ligands, MeIm(Me)$_2$, MeIm(Me)$_2$, and MeIm(Me)$_2$ (MeIm(Me)$_2$ = (1-methyl-4-imidazolylmethyl)bis(2-pyridylmethyl)amine), have also been synthesized for comparison. The imidazolate-bridged Cu(II)–Cu(II) homodinuclear complexes represented as [Cu$_2$(bdpi)-

(CH$_3$CN)$_2$][ClO$_4$]$_2$ (1), [Cu$_2$(bdpi)-

(CH$_3$CN)$_2$][ClO$_4$]$_2$ (2), [Cu$_2$(Me$_4$bdpi)(H$_2$O)$_2$][ClO$_4$]$_2$]4H$_2$O (3), a Cu(II)–Zn(II) heterodinuclear complex of the type of [CuZn(bdipi)(CH$_3$CN)$_2$][ClO$_4$]$_2$ (4), Cu(II) mononuclear complexes of [Cu(MeIm(Me)$_2$)-

(CH$_3$CN)][ClO$_4$]$_2$CH$_3$CN (5), [Cu(MeIm(Me)$_2$)(CH$_3$CN)][ClO$_4$]$_2$ (6), and [Cu(MeIm(Me)$_2$)(CH$_3$CN)][ClO$_4$]$_2$ (7) have been synthesized and the structures of complexes 5–7 determined by X-ray crystallography. The complexes 1–7 have a pentacoordinate structure at each metal ion with the imidazolate or 1-methylimidazolate nitrogen, two pyridine nitrogens, the tertiary amine nitrogen, and a solvent (CH$_3$CN or H$_2$O) which can be readily replaced by a substrate. The reactions between complexes 1–7 and hydrogen peroxide (H$_2$O$_2$) in the presence of a base at ~80°C yield green solutions which exhibit intense bands at 360–380 nm,
consistent with the generation of hydroperoxo Cu-(II) species in all cases. The resonance Raman spectra of all hydroperoxo intermediates at -80 degreesC exhibit a strong resonance-enhanced Raman band at 834-851 cm^{-1}, which shifts to 788-803 cm^{-1} (Δv = 46 cm^{-1}) when ^18O-labeled H_2O_2 was used, which are assigned to the O-O stretching frequency of a hydroperoxo ion. The resonance Raman spectra of hydroperoxo adducts of complexes 2 and 6 show two Raman bands at 848 (802) and 834 (788), 851 (805), and 835 (789) cm^{-1} in the case of H_2^{18O}_2, Δv = 46 cm^{-1}, respectively. The ESR spectra of all hydroperoxo complexes are quite close to those of the parent Cu(II) complexes except 6. The spectrum of 6 exhibits a mixture signal of trigonal-bipyramid and square-pyramid which is consistent with the results of resonance Raman spectrum.

IX-G-15 Oxygenation of Phenols to Catechols by a (μ-η^2-η^2-peroxo)dicopper(II) Complex. Mechanistic Insight into the Phenolase Activity of Tyrosinase

ITOH, Shinobu; KUMEL, Hideyuki; TAKI, Masayasu; NAGATOMO, Shigenori; KITAGAWA, Teizo; FUKUZUMI, Shunichi

Mechanistic studies on the oxygenation of phenolates to the corresponding catechols by a (μ-η^2-η^2-peroxo)dicopper(II) complex have been carried out to provide significant insight into the mechanism of phenolase activity of tyrosinase. Treatment of [Cu-(LPy2Bz)]PF_6 (LPy2Bz = N,N-Bis[2-(2-pyridyl)ethyl]-α,α-dideuterio-benzylamine) with molecular oxygen in acetone at -94 °C gave a (μ-η^2:η^2-peroxo)dicopper(II) complex, the formation of which has been confirmed by its characteristic UV-vis [λ_{max} = 364 and 530 nm (ε = 26400 and 1500 M^{-1} cm^{-1})] and resonance Raman spectra (V_{O(16)-O(16)} = 737 cm^{-1}, V_{O(18)-O(18)} = 697 cm^{-1}) as well as the ESR-silence and the observed stoichiometry of Cu:O_2 = 2:1. Addition of lithium salts of p-substituted phenols to the solution induces oxygenation at its α-position to give the corresponding catechols in good yields, but no C-C or C-O coupling dimer is produced. The reaction obeys pseudo-first-order kinetics in the presence of excess amount of substrate and shows a Michaelis-Menten type saturation phenomenon. The reactivity of the substrates increases as the electron-donating nature of the p-substituent increases. In addition, no catechol formation was observed when a bis(μ-oxo)dicopper(III) was employed instead of the (μ-η^2:η^2-peroxo)dicopper(II) complex under the same experimental conditions. All these results suggest that the oxygenation of phenolates to catechols by the (μ-η^2:η^2-peroxo)dicopper(II) complex proceeds via electrophilic attack of the peroxo species to the phenolate in a binary complex between the peroxo species and the substrate.

IX-G-16 Differences in Changes of Subunit Interfacial Contacts upon Ligand Binding to the α or β Subunits of Ni–Fe Hybrid Hemoglobin Probed by UV Resonance Raman Spectroscopy

NAGATOMO, Shigenori; NAGAI, Masako; SHIBAYAMA, Naoya; KITAGAWA, Teizo

To see the α1-β2 subunit contacts in the half-ligated hemoglobin A (HbA), ultraviolet resonance Raman (UVRR) spectra of Ni–Fe hybrid Hb have been examined under various solution conditions. Our previous studies demonstrated that Trp837, Tyr424 and Tyrα140 are mainly responsible for UVRR spectral differences between deoxyHbA and COHbA (Nagai, M., Wajcman, H., Lahary, A., Nakatsukasa, T., Nagatomo, S., and Kitagawa, T. *Biochemistry* 38, 1243 (1999)). The half-ligated αNiCO and αCOβNi stayed in the complete T structure similar to deoxyHbA. Upon ligand binding to Fe hemes, Trp residues are changed toward the R-like contact to a similar extent in αNiCO and αCOβNi. The spectral changes of Tyr and Trp are not synchronous and also different between αNiCO and αCOβNi. It is not until pH 8.7 with αNiOxy that Tyr residues change upon ligand binding in the presence of IHP, while they changed at pH 6.7 in the absence of IHP. The structural change of Tyr residues is induced by binding of CO, but not NO, to α heme, while they were induced similarly by binding of CO and NO to β-heme. Structural changes of Trp residues are induced by the CO binding to either α- or β-heme. These observations directly indicate that the phenomenon occurring at the α1-β2 interface is different between ligand binding to α- and β-hemes and that it is greatly influenced by IHP. Thus in this study, we supplement our previous study on NOHb regarding the mechanism of the change of Tyr residues.

IX-G-17 Resonance Raman Studies of the Oxygen Sensing Signal Transducer Protein HemAT from Bacillus Subtilis

AONO, Shigetoshi; KATO, Toshiyuki; MATSUKI, Mayumi; NAKAJIMA, Hiroshi; OHTA, Takehiro; UCHIDA, Takeshi; KITAGAWA, Teizo

HemAT-Bs is a heme-containing signal transducer protein responsible for aerotaxis of *Bacillus subtilis*. The recombinant HemAT-Bs expressed in *E. coli* was purified as the oxy form in which O_2 was bound to the ferrous heme. Although the electronic absorption spectra of HemAT-Bs were similar to those of myoglobin, HemAT-Bs showed some unique characteristics in its resonance Raman spectra. O_2-bound HemAT-Bs showed the v(Fe–O_2) band at 560 cm^{-1}, which suggests a unique hydrogen bonding to the bound O_2 i.e., the hydrogen bonding between a distal amino acid residue and the proximal oxygen atom of the bound O_2. Deoxy HemAT-Bs showed the v(Fe–His) band at 225 cm^{-1}, which indicates a relatively stronger hydrogen bonding to the proximal His and/or a less strained Fe–His bond compared with myoglobin. CO-
bound HemAT-Bs showed the ν(Fe–CO) and ν(C–O) bands at 494 and 1964 cm\(^{-1}\), respectively. These results indicate that a histidine is an axial ligand of the heme in HemAT-Bs.

IX-G-18 Time-Resolved UV Resonance Raman Investigation of Protein Folding: Characterization of Kinetic and Equilibrium Intermediates of Apomyoglobin

HARUTA, Nami\(^1\); KITAGAWA, Teizo

(\(^1\)GUAS)

[J. Biochemistry submitted]

The equilibrium acid-unfolding intermediate and kinetic folding intermediates of apomyoglobin were investigated by 244 nm-excited UV resonance Raman spectroscopy combined with a new rapid mixer. The dead time for mixing in the newly constructed flow-mixer was determined to be 150 µs with UV Raman spectral changes of imidazole to imidazolium upon mixing with an acid. The pH-jump experiments of apomyoglobin (apoMb) from 2.2 to 3.6 conducted with this device demonstrated the presence of three folding intermediates. Based on the analysis of W3 and W7 bands of Trp7 and Trp14, the first intermediate, formed before 250 µs, involved inclusion of Trp14 into an α-helix from a random coil. In the second intermediate, formed around 1 ms after the start of folding, the surroundings of both Trp7 and 14 were significantly hydrophobic, suggesting the formation of hydrophobic core. In the third intermediate appearing around 3 ms, the hydrophobicity was relaxed to the same level as that of the pH 4 equilibrium intermediate, which was investigated in detail with the stationary state technique. The change from the third intermediate to the native state takes time longer than 40 ms, while the appearance of the native spectrum after the mixing of the same solutions was confirmed separately.

IX-G-19 Raman Spectroscopy of Proteins

KITAGAWA, Teizo; HIROTA, Shun\(^1\)

(\(^1\)Nagoya Univ.)

Infrared (IR) and Raman spectroscopy are the main methods to measure the vibrational spectrum of proteins. When a molecular vibration is accompanied by a change of dipole moment, the mode is IR active, and when the vibration is accompanied by a change of polarizability, the mode is Raman active. For a molecule with a center of symmetry, mutual exclusion occurs. Accordingly, the two methods are complementary. In the case of synthetic homopolypeptides with a specific geometry, IR and Raman active modes are often different from each other because of their symmetry properties. For general proteins, however, there is no symmetry, and therefore selection rules are not helpful for band assignments. In practice, some modes are stronger for Raman and others are stronger for IR.

The most important benefit of Raman in comparison with IR spectroscopy in observing the vibrational spectra of proteins is that the measurement of aqueous solutions is much easier with the former, because the Raman scattering from water is very weak. Since the technique can be applied to crystals as well as to solutions, it is also useful to compare structures of a protein in solution and crystalline phases. Another important characteristic of Raman spectroscopy is the possibility of resonance enhancement. When the excitation wavelength of Raman spectroscopy approaches an absorption maximum of an electronic transition of a molecule, some of the molecular vibrations gain strong enhancement of Raman intensity. This is called the resonance Raman effect. Under resonance conditions, very dilute solutions can be used for Raman measurements under conditions when ordinary Raman bands are not seen. As a result, the spectrum becomes simpler. In such a case, as detailed information on the molecular structure can be derived from the spectrum of a biopolymer with a molecular weight of 10^5 as can be found for small molecules. By selecting an appropriate excitation wavelength, different chromophores of the same molecule can be monitored. Accordingly, for colored proteins, visible excitation of Raman scattering provides structural information on a chromophore and UV excitation selectively brings about the vibrational spectra of side chains of aromatic residues and the polypeptide skeleton.

IX-G-20 Identification of Tyrosine Residues Involved in Ligand Recognition by the Phosphatidylinositol 3-Kinase Src Homology 3 Domain: Circular Dichroism and UV Resonance Raman Studies

OKISHIO, Nobuyuki\(^1\); TANAKA, Toshiyuki\(^2\); NAGAI, Masako\(^1\); FUKUDA, Ryuji\(^1\); NAGATOMO, Shigenori; KITAGAWA, Teizo

(\(^1\)Kanazawa Univ.; \(^2\)Univ. Tsukuba)

[Biochemistry in press]

Src homology 3 (SH3) domains are small non-catalytic protein modules capable of mediating protein-protein interactions. We previously demonstrated that the association of a ligand peptide RLPI (RLKPPRPSK) causes environmental and structural changes of Trp55 and some of seven Tyr residues in the phosphatidylinositol 3-kinase (PI3K) SH3 domain by circular dichroism (CD) and 235-nm excited UV resonance Raman (UVRR) spectroscopies [Okishio, N., et al. Biopolymers 57, 208 (2000)]. In this work, the affected Tyr residues were identified as Tyr12, Tyr14, and Tyr73 by the CD analysis of a series of mutants, in which every single Tyr residue was replaced by a Phe residue. Among these three residues, Tyr14 was found to be a main contributor to the UVRR spectral change upon the RLPI binding. Interestingly, CD and UVRR analyses revealed that RLPI associates with the Y14F and Y14H mutants in different ways. These results suggest that Tyr14 plays a crucial role in the ligand recognition, and the amino acid substitution at Tyr14 affects the mode of
IX-H Fast Dynamics of Photoproducts in Solution Phases

Picosecond time-resolved resonance Raman (ps-TR3) spectroscopy is a promising technique to investigate ultrafast structural changes of molecules. However, this technique has not been used as widely as nanosecond TR3 spectroscopy, mainly due to the lack of light source which has suitable repetition rates of pulses and wavelength tunability. In order to obtain qualified TR3 spectra, first we need two independently tunable light sources for pump and probe pulses. Second, the repetition rate should be higher than kiloHertz to keep a moderate average laser power without making the photon density of probe pulse too high. We succeeded in developing light sources for ps-TR3 spectroscopy having wide tunability and kHz repetition, and applied them to study fast dynamics of photo-excited molecules. For carbonmonoxy myoglobin (MbCO), vibrational relaxation with the time constant of 1.9 ps was observed for CO-photodissociated heme. For Ni–octaethylporphyrin in benzene, differences in rise times of population in vibrationally excited levels among various modes were observed in the anti-Stokes spectra for the first time. This technique has been applied to identify the trans ligand of CO in the CO-bound transcriptional factor, Coo A.

On the other hand, we have constructed a nanosecond temperature-jump apparatus using a water absorption in near infrared. The new apparatus based on a Nd:YAG laser was combined with a time-resolved Raman measurement system and applied successfully to explore thermal unfolding of ribonucelase A.

IX-H-1 Ultrafast Dynamics of Myoglobin Probed by Time-resolved Resonance Raman Spectroscopy

MIZUTANI, Yasuhisa; KITAGAWA, Teizo

[Chem. Records 1, 258 (2001)]

Recent experimental work on the ultrafast dynamics of myoglobin carried out in this laboratory is summarized with a stress on structural and vibrational energy relaxation. Studies on the structural relaxation of myoglobin following CO photolysis revealed that the structural change of heme itself caused by CO photodissociation is completed within the instrumental response time of the time-resolved resonance Raman apparatus used (~2 ps). In contrast, changes in the intensity and frequency of the iron-histidine (Fe–His) stretching mode upon dissociation of the trans ligand were found to occur in the picosecond regime. The Fe–His band is absent for the CO-bound form, and its appearance upon photodissociation was not instantaneous in contrast with that observed in the vibrational modes of heme, suggesting appreciable time evolution of the Fe displacement from the heme plane. The band position of the Fe–His stretching mode changed with a time constant of about 100 ps, indicating that tertiary structural changes of the protein occurred in a 100-ps range. Temporal changes of the anti-Stokes Raman intensity of the ν4 and ν2 bands demonstrated immediate generation of vibrationally excited heme upon the photodissociation and decay of the excited populations, whose time constants are 1.1 ± 0.6 and 1.9 ± 0.6 ps, respectively. In addition, the development of the time-resolved resonance Raman apparatus and prospects in this research field are described.

IX-H-2 Time-Resolved Resonance Raman Study of the Exciplex Formed between Excited Cu-Porphyrin and DNA

KRUGLIK, G. Sergei1; MOJZES, Peter2; MIZUTANI, Yasuhisa; KITAGAWA, Teizo; TURPIN, Pierre-Yve3

(1 B. I. Stepanov Inst. Phys.; 2 Charles Univ.; 3 Univ. Pierre)

The photoinduced reversible process of exciplex formation and decay between the water-soluble cationic metallocporphyrin 5,10,15,20-tetrakis[4-((N-methylpyridyl)](Cu(T4MPyP)) and calf-thymus DNA has been studied by a picosecond time-resolved resonance Raman (ps-TR3) technique. For a detailed analysis of the exciplex properties, the following model compounds have also been investigated: double-stranded polydeoxynucleotides poly(dA-dT)2, poly(dG-dC)2, and poly(dA-dC), poly(dG-dT), single-stranded poly(dT), and the 12-mer d([Gr]7ATAT(GC)7)2. Additional Raman measurements have also been done in using cw and 20-ns laser sources. It is shown that this reversible exciplex is formed, with a yield depending on the nucleic base sequence, in less than 2 ps after photoexcitation, between photoexcited Cu(T4MPyP) and C=O groups of thymine residues in all thymine-containing sequences of nucleic acids. Such a rapid exciplex building process implies that it involves porphyrin molecules initially located, in the steady state of this interaction, at AT sites of the nucleic acids. This has two main consequences, which contradict previously reported assumptions (Strahan et al., J. Phys. Chem. 96, 6450 (1992)): (i) Although the binding mode of the porphyrin actually depends on the base sequence, there is no preferential binding of Cu(T4MPyP) to the various sites of DNA,
and (ii) there is no photoinduced ultrafast porphyrin translocation from GC to AT sites of DNA. In addition, it is shown that with surrounding water molecules an exciplex can also be formed in ~1 ps, whose spectral characteristics are not distinguishable from those formed with thymine residues. However, these two exciplex species can be distinguished from each other by their relaxation kinetics: the lifetime of the exciplex formed with water lies in the 3–12 ps range, while that of the exciplex formed with nucleic acids lies in the nanosecond time domain (1–3 ns). A set of possible routes is discussed for each of the exciplex building/decay processes.

IX-H-3 Ultrafast Structural Relaxation of Myoglobin Following Photodissociation of Carbon Monoxide Probed by Time-Resolved Resonance Raman Spectroscopy

MIZUTANI, Yasuhisa; KITAGAWA, Teizo

[J. Phys. Chem. 105, 10992 (2001)]

Studies on the structural relaxation of myoglobin following CO photolysis revealed that the structural change of heme itself caused by the cleavage of the Fe–CO bond is completed within the instrumental response time (~2 ps) of the time-resolved resonance Raman apparatus used. In contrast, changes in the intensity and frequency of the iron-histidine stretching [ν(Fe–His)] mode were found to occur in the picosecond regime. The ν(Fe–His) band is absent for the CO-bound form, and its appearance upon photodissociation was not instantaneous in contrast with the changes observed in the vibrational modes of heme, suggesting appreciable time evolution of the Fe displacement from the heme plane. Same behaviors were observed for the model compound of the heme part without protein matrix. Therefore the intensity change in ν(Fe–His) is not associated with protein relaxation following the CO photodissociation. The band position of the ν(Fe–His) mode changed with a time constant of about 100 ps, while that of the model compound without the protein matrix showed no shift. This indicates that tertiary structural changes of the protein occurred in a 100-ps range.