CONTENT

IMS 2002	-iii
CONTENT	V
ORGANIZATION AND STAFF	
COUNCIL	-13
BUILDINGS AND CAMPUS	-15
RESEARCH ACTIVITIES I	-17
Department of Theoretical Studies	
I-A Theoretical Study and Design of New Bonding, Structures, and Reactions	17
I-A-1 A Silicon-Silicon Triple Bond Surrounded by Bulky Terphenyl Groups	17
I-A-2 The Quest of Stable Silanones: Substituent Effects	17
I-A-3 Substituent Effects on Germanium-Germanium and Tin-Tin Triple Bonds	17
I-A-4 Theoretical Study of an Isolable Compound with a Short Silicon-Silicon Triple Bond;	
$(tBu_3Si)_2MeSiSi\equiv SiSiMe(SitBu_3)_2$	17
I-A-5 Intersting Compounds Featuring Double Bonding between Heavier Group 15 Elements I-A-6 The First Halogen-Substituted Cyclotrigermenes: A Unique Halogen Walk	
over the Three-Membered Skeleton and Facial Stereoselectivity in the Diels-Alder Reaction	18
I-A-7 Effects of the σ^* Orbital of C-Apical O-Equatorial Spirophosphoranes on the Structure,	4.0
Stereomutation, and Reactivity	18
I-A-8 Theoretical Calculations of Vibrational Modes in Endohedral Metallofullerenes:	4.0
La@ C_{82} and Sc $_2$ @ C_{84}	18
I-A-9 A Stable Unconventional Structure of Sc ₂ @C ₆₆ Found by Density Functional Calculations	
I-A-10 Theoretical Study of the Cations and Anions of La ₂ @C ₈₀ and Sc ₃ N@C ₈₀	18
I-A-11 Theoretical Identification of the Structures of C ₂₀ : Prevalence of the Monocyclic Isomer	1.0
and Existences of the Smallest Fullerene and Bowl Isomers	
I-A-12 The Size of Silicon Clusters Suitable for Endohedral Metal-Doping	19
I-A-13 What is the Smallest Metal-Encapsulated Germanium Clusters?	19 10
I-A-14 Host-Guest Interaction in Molecular Capusule Formation	19
I-A-15 Does the Axial Ligand of Iron (IV)-Oxo-Porphyrin Affect the Reactivity of Cytochrome P450?	10
	19
I-A-16 A Nonspectroscopic Method to Determine the Photolytic Decomposition Pathways	10
of 3-Chloro-3-Alkyldiazirine; Carbene, Diazo and Rearrangement in Excited State	19
I-A-17 Prediction of Molecular Crystal Structures by an Ab Initio Pair Potential Method	
I-B Prediction of Protein Tertiary Structures from the First Principles	21
I-B-1 Replica-Exchange Monte Carlo Simulation of a Small Peptide in Aqueous Solution Based on the RISM Theory	21
I-B-2 Comparison of AMBER, CHARMM, OPLS, and GROMOS Force Fields	21
by Generalized-Ensemble Simulations	21
I-C Development of Simulation Algorithms for Complex Systems	21
I-C-1 An Application of the Multicanonical Monte Carlo Method to the Bulk Water System	21
I-D Applications of the Zhu-Nakamura Theory	21
to Electronically Nonadiabatic Chemical Reactions	23
I-D-1 Significant Improvement of the Trajectory Surface Hopping Method	23
by the Zhu-Nakamura Theory	23
I-D-2 New Inplementation of the Trajectory Surface Hopping Method	23
with Use of the Zhu-Nakamura Theory. II. Application to the Charge Transfer Processes	
in the 3D DH ₂ ⁺ System	23
I-D-3 Elucidations of Nonadiabatic Tunneling Type and Conical Intersection Type Reactions	23
with Use of the Zhu-Nakamura Theory	23
I-E Theory of Nonadiabatic Transitions	
I-E-1 Nonadiabatic Transition: Concepts, Basic Theories and Applications	
I-E-1 Nonadiabatic Transition. Concepts, Basic Theories and Applications	
I-E-2 Semiclassical Theory of Nonadiabatic Transition and Tunneling	∠4 2/
I-E-5 Analytical Solutions to wave Facket Dynamics in a Laser Field	24 21
I-F-1 Accurate Quantum Dynamics of Electronically Nonadiabatic Chemical Reaction	24
in the DH ₂ ⁺ System	24
11 the D11/ D (Dtell)	∠-T

I-F-2 Chemical Reactions in the $O(^1D)$ + HCl System I. Ab Initio Global Potential Energy	
Surfaces for the 1^1A ', 2^1A ', and 1^1A '' States	24
I-F-3 Chemical Reactions in the $O(^1D)$ + HCl System II. Dynamics on the Ground 1^1A ' State	~ ~
and Contributions of the Excited (1^1A " and 2^1A ") States	25
I-F-4 Chemical Reactions in the $O(^1D)$ + HCl System III. Quantum Dynamics	25
on the Excited (1 ¹ A" and 2 ¹ A') Potential Energy Surfaces	25
I-F-5 Use of Diabatic Basis in the Adiabatic-by-Sector R-Matrix Propagation Method in Time-Independent Reactive Scattering Calculations	25
I-G Laser Control of Molecular Processes	25 25
I-G-1 Control of Photodissociation Branching Using the Complete Reflection Phenomenon:	-23
Application to HI Molecule	25
I-G-2 Control of Molecular Processes by a Sequence of Linearly Chirped Pulses	
I-G-3 Selective Excitation among Closely Lying Multi-Levels	25 26
I-G-4 Photodissociation of H_2^+ and HD^+ in an Intense Laser Field	20 26
I-H Theory of Multi-Dimensional Tunneling	26
I-H-1 Practical Implementation of the Instanton Theory for the Ground-State Tunneling Splitting	-26
I-H-2 Instanton Theory for Multi-Dimension Decay through Tunneling	
I-I New Methods for Scattering Calculations	27
I-I-1 Regularization of Scattering Calculations at <i>R</i> -Matrix Poles	27
I-I-2 Calculation of Resonances via the R-Matrix Method	27
I-J Theoretical Studies of Dissociative Attachment and Dissociative Recombination	
I-J-1 Study of Dissociative Electron Attachment to HI Molecule	
by Using R-Matrix Representation for Green's Function	27
I-J-2 Analytical Treatment of the K-Matrix Integral Equation in the Dynamics	
of Superexcited Molecules	27
I-K Theoretical Studies of Ultrafast Nonlinear Optical Spectroscopy of Molecules in Condensed	
Phases	29
I-K-1 Probing a Colored-Noise Induced Peak of a Strongly Damped Brownian System	
by One- and Two-Dimensional Spectroscopy	29
I-K-2 Vibrational Spectroscopy of a Harmonic Oscillator System Nonlinearly	•
Coupled to a Heat Bath	29
I-K-3 Two-Dimensional Raman and Infrared Vibrational Spectroscopy	20
for a Harmonic Oscillator System Nonlinearly Coupled with a Colored Noise Bath	29
I-K-4 Two-Time Correlation Function of a Two-Dimensional Quantal Rotator in a Colored Noise	20
I-K-5 Energy-Level Diagrams and Their Contribution to Two-Dimensional Spectroscopic Signal:	
Distinction between Relaxation Mechanisms by Two-Dimensional Spectroscopy	
I-K-6 Two-Dimensional Spectroscopy for a Two-Dimensional Rotator	-30
Coupled to a Gaussian-Markoffian Noise Bath	30
I-K-7 Absorption Spectra for Two-Dimensional Rotator with Nonlinear System-Bath Coupling	30 30
I-L The Condensed Phase Quantum Dynamics of Molecules and Atoms	31
I-L-1 The Energy Landscape for Solvent Dynamics in Electron Transfer Reactions:	
A Minimalist Model	-31
I-L-2 A Quantum Master Equation with a Langevin Force; a Realization of a Real-Time Quantum	
Monte-Carlo Simulation in a Dissipative Environment	31
I-M Theoretical Studies of Correlated Electron Systems	31
I-M-1 Biorthogonal Approach for Explicitly Correlated Calculations	
Using the Transcorrelated Hamiltonian	31
I-M-2 Application of the Transcorrelated Hamiltonian	
to the Linearized Coupled Cluster Singles and Doubles Model	31
I-N Electronic Properties of Nanostructured Materials	33
I-N-1 Carbon Foam: Spanning the Phase Space between Graphite and Diamond	33
I-N-2 Electronic Structure of Ba ₄ C ₆₀ and Cs ₄ C ₆₀	33
I-N-3 Geometric and Electronic Structure of New Carbon-Network Materials:	
Nanotube Array on Graphite Sheet	33
I-N-4 First Principles Study of H ₂ and CH ₄ Physisorption on Carbon Nanotubes	33
I-O Simulation and Dynamics of Chemical Systems	34
I-O-1 Quasi-Degenerate Perturbation Theory	_
with General Multiconfiguration Self-Consistent Field Reference Functions	34
I-O-2 A Highly Efficient Algorithm for Electron Repulsion Integrals	٠.
over Relativistic Four-Component Gaussian-Type Spinors	-34
I-O-3 Accurate Relativistic Gaussian Basis Sets Determined by the Third-Order Douglas-Kroll	21
Approximation with a Finite-Nucleus ModelI-O-4 A Density Functional Study of van der Waals Interactions	
1-O-4 A Density functional study of van der waars interactions	5 4

I-P	Theoretical Studies of Quantum Effects in Chemical Reactions	35
	Theoretical Studies of Quantum Effects in Chemical Reactions	
	Spin-Forbidden Electronic Quenching Collision	35
	I-P-2 Translational Energy Dependence of NO + NO / N ₂ + O ₂ Product Branching	
	in the $O(^1D) + N_2O$ Reaction: a Classical Trajectory Study on a New Global Potential Energy	
	Surface for the Lowest ¹ A' State	35
	I-P-3 A CASPT2 Study of the Doublet Potential Energy Surface for the $CH(X^2\Pi) + N_2(X^1\Sigma_g^+)$	
	Reaction	35
I-O	Electronic Structure of a Molecule in Solution	-36
- «	I-Q-1 Equilibrium and Nonequilibrium Solvation Structure of Hexaamineruthenium (II,III)	•
	in Aqueous Solution: Ab Initio RISM-SCF Study	36
I-R	Solvation Thermodynamics of Protein and Related Molecules	36
	I-R-1 Partial Molar Volumes and Compressibilities of Alkali-Halide Ions in Aqueous Solution:	20
	Hydration Shell Analysis with an Integral Equation Theory of Molecular Liquids	37
T.S	Collective Density Fluctuations in Polar Liquids and Their Response to Ion Dynamics	
1-5	I-S-1 Translational Diffusion and Reorientational Relaxation of Water	-51
	Analyzed by Site-Site Generalized Langevin Theory	38
	I-S-2 Interaction-Site Model Description of the Reorientational Relaxation of Molecular Liquids:	-50
	Incorporation of the Interestial Coupling into the Site Site	
	Generalized Langevin/Mode-Coupling Theory	38
	I. S. 3. Collective Density Fluctuations and Dynamics of Loss in Water	-50
	I-S-3 Collective Density Fluctuations and Dynamics of Ions in Water Studied by the Interaction-Site Model of Liquids	20
тт	Developing Theories of Liquids and Liquid Mixtures	30 20
1-1	I-T-1 Buthanol-Water Mixture, Structure of <i>tert</i> -Butyl Alcohol-Water Mixtures	30
	Studied by the RISM Theory	30
	I-T-2 Improvement of the Reference Interaction Site Model Theory for Calculating the Partial Mo	100
	Volume of Amino Acids and Polypeptides	20
	I-T-3 Description of a Polar Molecular Liquid in a Disordered Microporous Material	39
	with Activating Chemical Groups by a Replica RISM Theory	20
	with Activating Chemical Groups by a Replica Kishi Theory	39
	I-T-4 Toward a Molecular Theory for the van der Waals-Maxwell Description of Fluid Phase Transitions	20
	Of Fluid Fliase Transitions	37
TI	Noutral Ionic Dimerization and Photoinduced Phose Transitions and Their Dynamics	
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics	
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics in Mixed-Stack Organic Charge-Transfer Complexes	41
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics in Mixed-Stack Organic Charge-Transfer Complexes	41
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition	41
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics in Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials	- -41 41
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit	41 41
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes	41 41 41
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions	41 41 41
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions	41 41 41 42
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System	41 41 41 42
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions	41 41 41 42
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties	41 41 41 42 42
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems	41 41 41 42 42
I-U	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary	41 41 41 42 42 42
j	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions in the Two-Chain System I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model	41 41 41 42 42 42
I-V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions in the Two-Chain System I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions	41 41 41 42 42 42
I-V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes	41 41 41 42 42 42 42
I-V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics in Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering	41414142424242
I-V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions in the Two-Chain System I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu	4141414242424242
I-V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics in Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu I-V-2 Spin Solitons in the Alternate Charge Polarization Background of MMX Chains	4141414242424242
I-V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu I-V-2 Spin Solitons in the Alternate Charge Polarization Background of MMX Chains I-V-3 Photoexcited States and Photoinduced Dynamics in Electronic Phases	41 41 41 42 42 42 42 43
I-V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions in the Two-Chain System I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu I-V-2 Spin Solitons in the Alternate Charge Polarization Background of MMX Chains I-V-3 Photoexcited States and Photoinduced Dynamics in Electronic Phases of MMX-Chain Systems	41414142424242434343
I-V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions in the Two-Chain System I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu I-V-2 Spin Solitons in the Alternate Charge Polarization Background of MMX Chains I-V-3 Photoexcited States and Photoinduced Dynamics in Electronic Phases of MMX-Chain Systems	41414142424242434343
i -V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu I-V-2 Spin Solitons in the Alternate Charge Polarization Background of MMX Chains I-V-3 Photoexcited States and Photoinduced Dynamics in Electronic Phases of MMX-Chain Systems I-V-4 Electromodulation Spectra of Optical Absorption in One-Dimensional Strongly Correlated Systems	41 41 42 42 42 42 43 43 43
i -V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu I-V-2 Spin Solitons in the Alternate Charge Polarization Background of MMX Chains I-V-3 Photoexcited States and Photoinduced Dynamics in Electronic Phases of MMX-Chain Systems I-V-4 Electromodulation Spectra of Optical Absorption in One-Dimensional Strongly Correlated Systems	41 41 42 42 42 42 43 43 43
i -V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions in the Two-Chain System I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu I-V-2 Spin Solitons in the Alternate Charge Polarization Background of MMX Chains I-V-3 Photoexcited States and Photoinduced Dynamics in Electronic Phases of MMX-Chain Systems I-V-4 Electromodulation Spectra of Optical Absorption in One-Dimensional Strongly Correlated Systems Dimensional Crossovers in Electronic Phases and Their Excitation Spectra of Quasi-One-Dimensional Organic Conductors	41 41 42 42 42 42 43 43 43
i -V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu I-V-2 Spin Solitons in the Alternate Charge Polarization Background of MMX Chains I-V-3 Photoexcited States and Photoinduced Dynamics in Electronic Phases of MMX-Chain Systems I-V-4 Electromodulation Spectra of Optical Absorption in One-Dimensional Strongly Correlated Systems I-W-1 Dimensional Crossovers in Electronic Phases and Their Excitation Spectra of Quasi-One-Dimensional Organic Conductors I-W-1 Dimensional Crossovers and Phase Transitions in Strongly Correlated Low-Dimensional	41414142424242434343
i -V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu I-V-2 Spin Solitons in the Alternate Charge Polarization Background of MMX Chains I-V-3 Photoexcited States and Photoinduced Dynamics in Electronic Phases of MMX-Chain Systems I-V-4 Electromodulation Spectra of Optical Absorption in One-Dimensional Strongly Correlated Systems Dimensional Crossovers in Electronic Phases and Their Excitation Spectra Of Quasi-One-Dimensional Organic Conductors I-W-1 Dimensional Crossovers and Phase Transitions in Strongly Correlated Low-Dimensional Electron Systems: Renormalization-Group Study	41414142424242434343
i -V	Neutral-Ionic, Dimerization and Photoinduced Phase Transitions and Their Dynamics In Mixed-Stack Organic Charge-Transfer Complexes I-U-1 Finite-Temperature Phase Diagram of Mixed-Stack Charge-Transfer Complexes I-U-2 Lattice and Magnetic Instabilities near the Neutral-Ionic Phase Transition of the One-Dimensional Extended Hubbard Model with Alternating Potentials in the Thermodynamic Limit I-U-3 Variation of Excitation Spectra in Mixed-Stack Charge-Transfer Complexes I-U-4 Dynamic Spin Correlations near Neutral-Ionic Phase Transitions I-U-5 Thermodynamics of Neutral-Ionic and Ferroelectric Phase Transitions in the Two-Chain System I-U-6 Domain-Wall Dynamics after Photoexcitations near Neutral-Ionic Phase Transitions I-U-7 Variation Mechanisms of Ground-State and Optical-Excitation Properties in Quasi-One-Dimensional Two-Band Electron Systems I-U-8 Photoinduced Dynamics of Ionicity near the Neutral-Ionic Phase Boundary in a One-Dimensional Extended Peierls-Hubbard Model Self-Doping, Nonlinear Excitations and Photoinduced Transitions between Charge and Lattice Ordered Phases of Metal Complexes I-V-1 Self-Doping Effect on the Mott Transition Accompanied with Three-Fold Charge Ordering in (DCNQI) ₂ Cu I-V-2 Spin Solitons in the Alternate Charge Polarization Background of MMX Chains I-V-3 Photoexcited States and Photoinduced Dynamics in Electronic Phases of MMX-Chain Systems I-V-4 Electromodulation Spectra of Optical Absorption in One-Dimensional Strongly Correlated Systems I-W-1 Dimensional Crossovers in Electronic Phases and Their Excitation Spectra of Quasi-One-Dimensional Organic Conductors I-W-1 Dimensional Crossovers and Phase Transitions in Strongly Correlated Low-Dimensional	41414142424242434343

I-X Underlying Gauge Structure and Competing Orders	
in Underdoped Cuprate Superconductors I-X-1 Signature of the Staggered Flux State around a Superconducting Vortex	
in Underdoped Cuprates	45
in the Lightly Doped Spin Liquid	45
I-X-3 Coexistence of Staggered Flux and Antiferromagnetic States in Superconducting Vortices in the Lightly Doped Mott Insulator	
RESEARCH ACTIVITIES II	47
Department of Molecular Structure	
Îl-A Development of Near-Field Dynamic Spectroscopy and Application to Mesophase Systems II-A-1 Development of an Ultrafast Near-Field Spectroscope and Observation	
of Dynamic Processes in GaAs Crystal	47
of a 100-nm Apertured Probe by Two-Photon-Induced Photoconductivity	48
II- A-3 Structure and Photophysics of PIC I-Aggregates	
Studied by Scanning Near-Field Optical Microscopy	48
H-B Laser Cooling and Trapping of Metastable Helium Atoms	50
II-B-1 New Design for Efficient Magneto-Optical Trapping of Metastable Helium Atoms	
II-C Spectroscopic Studies on Atoms and Ions in Liquid Helium	
II-C-1 Laser Spectroscopy of Eu Atoms in Liquid ³ He and ⁴ He	50 52
II-D-1 Redox-Coupled Conformational Alternations in Cytochrome c_3	32
from <i>D. vulgaris</i> Miyazaki F on the Basis of its Reduced Solution Structure	52
II-D-2 A Role of the Aromatic Ring of Tyr43 in Tetraheme Cytochrome c_3	
from Desulfovibrio vulgaris Miyazaki F	52
II-D-3 A Directional Redox-Regulator Based on the Heme-Chain Architecture	
in the Small Tetraheme Cytochrome c from Shewanella oneidensis	52
II-E Studies on Higher-Order Gaussian Light Beams	
II-E-1 Simple Generation of Higher-Order Gaussian Beams and the Application to Spectroscopy II-F Ultrafast Dynamics of Surface Adsorbed Species	-54
II-F-1 Time-Resolved Study of Formate on Ni(111) by Picosecond SFG Spectroscopy	
II-F-2 SFG Spectroscopy of CO/Ni(111): UV Pumping and Transient Hot Band Transition	
of Adsorbed CO	
II-F-3 Surface Hydroxyl Group and Adsorbed Water on γ-Al ₂ O ₃ Studied by Picosecond Infrared	l
Pump-Probe Experiment	55
II-G Spin Reorientation Transitions of Ultrathin Magnetic Films Induced by Chemisorption II-G-1 Perpendicular Magnetic Anisotropy in Co/Pd(111) Stablized by Chemisorption of CO and NO	
II-H Local Structures in Photoinduced States of Molecular-Based Magnetic Materials	57
II-H-1 Photoinduced Phase Transition of RbMnFe(CN) ₆	
Studied by X-Ray-Absorption Fine Structure Spectroscopy	57
II-I Molecular and Electronic Structures of Metallofullerenes	58
II-I-1 Spin Dynamics of Lanthanum Metallofullerenes	58
II-I-2 Electronic State of Scandium Trimer Encapsulated in C ₈₂ Cage	58
II-I-3 Efficient Reduction of Metallofullerenes by Solvation of Pyridine and Dimethylformamide	
II-J High Field and Pulsed Electron Spin Resonance Spectroscopy	50
II-J-2 A Bindschedler's Green-Based Arylamine: Its Polycations with High-Spin Multiplicity	60
II-K State Correlated Raman Spectroscopy	
II-K-1 Molecular Ordering Deformation Induced by Externally Applied Electric Field	
in an Antiferroelectric Liquid Crystal	61
RESEARCH ACTIVITIES III	63
Department of Electronic Structure	
III-A Synthesis and Characterization of Exotic Molecule-Based Nano-Clusters	
with Transition Metals: Behavior as Single Domain Magnets	63
III-A-1 Magnetic Behavior of Crude CoC ₂ Solid Synthesized in Acetonirile Solution	63
III-A-2 Electron Microscope and EXAFS Study of Matrix Embedded (Co–C ₂) _n Nano-Cluster Magnets	
of Matrix Empedded (Co-C ₂), Nano-Cluster Magnets	63

	III-A-3 Magnetic Behavior of Matrix Embedded (Co–C ₂) _n Nano-Clusters	
	as Single Domain Room-Temperature Magnets	64
	III-A-4 Construction of Vacuum Apparatus for Mass-Resolved Spectroscopies	
	of Non-Volatile Solid Samples	64
III-B	States of Neutral and Ionic Molecular Associates in Solutions	65
	III-B-1 States of Molecular Associates in Binary Mixtures of Acetic Acid	
	with Protic and Aprotic Polar Solvents: A Raman Spectroscopic Study	65
III-C	Ultrafast Dynamics and Scanning Tunneling Microscopy	66
	III-C-1 Construction of an Apparatus for Direct Observation of Reactions	
	Induced by Ultrafast Laser Pulses Using a Low Temperature STM	66
	III-C-2 Construction of a Femtosecond Time-Resolved Ionization Detected Spectrometer	66
	III-C-3 Picosecond Time-Resolved Raman Studies on the Photochromic Reactions	
	of Diarylethenes	67
III-D	Spectroscopic and Dynamical Studies of Molecular Cluster Ions	67
	III-D-1 Intermolecular Interactions in Aniline/Benzene Hetero-Trimer and Aniline Homo-Trimer Ions	
	III-D-2 Infrared Photodissociation Spectroscopy of Protonated Formic Acid-Water Binary Cluster	rs,
	H^+ ·(HCOOH) _n ·H ₂ O (n = 1–5). Spectroscopic Study	
	of Ion Core Switch Model and Magic Number	68
	III-D-3 Infrared Photodissociation Spectroscopy of Aniline ⁺ –(Water) _{1,2}	
	and Aniline ⁺ –(Methanol) _{1,2}	68
	III-D-4 Intracluster Proton Transfer in Aniline–Amine Complex Ions	68
	III-D-5 LIF and IR Dip Spectra of Jet-Cooled p -Aminophenol– M (M = CO, N ₂): Hydrogen-Bonded or van der Waals-Bonded Structure?	
	Hydrogen-Bonded or van der Waals-Bonded Structure?	68
	III-D-6 Structure and Intermolecular Hydrogen Bond of Jet-Cooled p-Aminophenol–(H ₂ O) ₁	
	Studied by Electronic and IR-Dip Spectroscopy and Density Functional Theory Calculations -	69
	III-D-7 Positive Charge Distribution in (Benzene) ₁ (toluene) ₂ ⁺ and (Benzene) ₂ (toluene) ₁ ⁺	60
	Studied by Photodissociation Spectroscopy	69
шт	III-D-8 Infrared Photodissociation Spectroscopy of [Aniline–(Water) _n] ⁺ $(n = 1-8)$	09
111-E	Spectroscopy and Dynamics of Vibrationally Excited Molecules and Clusters	/0
	Spectroscopy and Ab Initio MO Calculations I: Electronic Transitions	72
	III-E-2 Hydrogen Transfer in Photo-Excited Phenol/Ammonia Clusters by UV-IR-UV Ion Dip	/ 2
	Spectroscopy and Ab Initio MO Calculations II: Vibrational Transitions	72
	III-E-3 Picosecond Time-Resolved Infrared Spectra of Photo-Excited Phenol-(NH ₃) ₃ Cluster	72 72
	III-E-4 Picosecond Time-Resolved Nonresonant Ionization Detected IR Spectroscopy	12
	on 7-Azaindole Dimer	73
	III-E-5 Structure of Hydrogen-Bonded Clusters of 7-Azaindole Studied by IR Dip Spectroscopy a	
	Ab Initio Molecular Orbital Calculation	73
	III-E-6 Structures of Carbazole- $(H_2O)_n$ ($n = 1-3$) Clusters Studied by IR Dip Spectroscopy	, .
	and a Quantum Chemical Calculation	73
	III-E-7 Structure of 1-Naphthol/Alcohol Clusters Studied by IR Dip Spectroscopy	
	III-E-7 Structure of 1-Naphthol/Alcohol Clusters Studied by IR Dip Spectroscopy and Ab Initio Molecular Orbital Calculations	73
	III-E-8 Pulsed Field Ionization Zero Kinetic Energy Photoelectron Study	
	on Methylanisole Molecules in a Supersonic Jet	73
	III-E-9 The PFI-ZEKE Photoelectron Spectrum of m-Fluorophenol and its Aqueous Complexes:	
	Comparing Intermolecular Vibrations in Rotational Isomers	74
	III-E-10 OH- and CH-Stretching Overtone Spectra of Catechol	74
III-F	Ultrafast Molecular Dynamics Studied by Time-Resolved Photoelectron Imaging	75
	III-F-1 Ionization Dynamics of NO A (${}^{2}\Sigma^{+}$) State	
	Studied by Time-Resolved Photoelectron Imaging	75
	III-F-2 Theoretical Analysis of Rotational Revivals in Intersystem Crossing in Pyrazine	75
	III-F-3 Femtosecond Photoelectron Imaging on Pyridazine: S ₁ Decay Rate	
	and 3s and 3p Rydberg State Energetics	76
III-G	Non-Adiabatic Photodissociation Dynamics of Fundamental Molecules	76
	III-G-1 Non-Adiabatic Bending Dissociation of OCS:	
	The Effect of Bending Excitation on the Transition Probability	76
	III-G-2 Velocity Map Fragment Imaging on 205 nm Photodissociation of Nitrous Oxide	77
III-H	Development of New Devices for Molecular Dynamics Experiments	
	III-H-1 Three Dimensional Photofragment Imaging Using a Fast Response Imager	
	III-H-2 High Repetition Rate Two Dimensional Imaging Using C-MOS Imager	
	III-H-3 Construction of a Rotating-Source Crossed Beam Apparatus	77

III-I	gnificance
SI	III-I-1 Synthesis and Crystal Structure of a Novel Vanadium-Containing
	Tungstobismutate(III) $K_{12}[(VO)_3(BiW_9O_{33})_2]\cdot 30H_2O$
	III-I-2 Crystallization and Structural Characterization of Two Europium Molybdates,
	$Eu_4Mo_7O_{27}$ and $Eu_6Mo_{10}O_{39}$
	III-I-3 Nanocluster Crystals of Lacunary Polyoxometalates as Structure-Design-Flexible,
	Inorganic Nonlinear Materials
	III-I-4 A Three-Dimensional Inorganic/Organic Hybrid Vanadium Oxide Complex
	with Pentacoordinate Co^{II} , $[CoV_2O_6(4,4'\text{-bipy})]$
	III-I-5 H_2O_2 -Based Epoxidation of Bridged Cyclic Alkenes with $[P\{Ti(O_2)\}_2W_{10}O_{38}]^{7-}$
	in Monophasic Systems: Active Site and Kinetics
	III-I-7 Photochemical Formation of a Lacunary Tire-Shaped Anion, [Mo ₁₄₂ O ₄₃₂ H ₂₆ (H ₂ O) ₅₈] ¹⁴ -,
	through Degradative Self-Assembly of [Mo ₂ cO ₁₁₂ (H ₂ O) _{1c}] ⁸⁻
	Topology of Ring-Structural Molybdenum Blues
	III-I-8 Size-Dependent Population of Trivalent Rare Earth Cations (RE ³⁺)
	in $[(RE)_2(H_2O)_2(SbW_9O_{33})(W_5O_{18})_2]^{15-}$, and Structural Characterization
	of a Luthetium-Polyoxotung state Complex $[Lu_3(H_2O)_4(SbW_9O_{33})_2(W_5O_{18})_2]^{21-}$
	III-I-9 Gd ₄ Mo ₇ O ₂₇ , a Novel Phase in the Gd ₂ O ₃ -MoO ₃ System
TTT T	III-I-10 Time-Resolved ESR-Spectroscopic Investigation of Polyoxometalate Photochemistry
111-J	Electronic Spectroscopy and Excited-State Dynamics of Aromatics Clusters
	III-J-2 S_1 - S_0 Vibronic Spectrum of the Benzene Trimer
ш-к	Electronic Spectroscopy of Molecules in Pendular States
	III-K-1 Construction of an Apparatus for Measurements of Fluorescence Excitation Spectra
	in a Strong DC Electric Field
	III-K-2 Laser-Induced Fluorescence Spectra of Pendular-State Aromatics
	in a Strong DC Electric Field
III-L	Wave Packet Engineering Using a Phase-Programmable Femtosecond Optical Source
	III-L-1 Single Molecular Phase-to-Amplitude Converter
EAF	
	RCH ACTIVITIES IV
epar	RCH ACTIVITIES IVtment of Molecular Assemblies
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TlM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TlM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TlM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors IV-A-8 Charge and Molecular Arrangement in (DI-DCNQI) ₂ Ag Studied by Vibrational Spectra
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TlM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TlM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TlM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors IV-A-8 Charge and Molecular Arrangement in (DI-DCNQI) ₂ Ag Studied by Vibrational Spectra IV-A-9 Charge Distribution and Molecular Arrangement in the Pressure-Induced Metallic Phase
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TlM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors IV-A-8 Charge and Molecular Arrangement in (DI-DCNQI) ₂ Ag Studied by Vibrational Spectra IV-A-9 Charge Distribution and Molecular Arrangement in the Pressure-Induced Metallic Phase of (DI-DCNQI) ₂ Ag
epar	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors IV-A-8 Charge and Molecular Arrangement in (DI-DCNQI) ₂ Ag Studied by Vibrational Spectra IV-A-9 Charge Distribution and Molecular Arrangement in the Pressure-Induced Metallic Phase of (DI-DCNQI) ₂ Ag
epar IV-A	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy
epar IV-A	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ II ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors IV-A-8 Charge and Molecular Arrangement in (DI-DCNQI) ₂ Ag Studied by Vibrational Spectra IV-A-9 Charge Distribution and Molecular Arrangement in the Pressure-Induced Metallic Phase of (DI-DCNQI) ₂ Ag IV-A-10 Study of the Phase Transitions of (DI-DCNQI) ₂ M (M = Ag, Li, Cu) through the Analys of the Temperature Dependent Vibronic and Vibrational Infrared Absorptions IV-A-11 Development of a High-Pressure Cell for Raman Measurement Using Sapphire Anvil - IV-A-12 Optical Study of Two-Dimensional Organic Metal (EO-TTP) ₂ AsF ₆ (EO-TTP=2-(4,5-ethylenedioxy-1,3-dithiol-2-ylidene)-5-(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) Microscopic Investigation of Molecular-Based Conductors
epar IV-A	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O
epar IV-A	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors IV-A-8 Charge and Molecular Arrangement in (DI-DCNQI) ₂ Ag Studied by Vibrational Spectra IV-A-9 Charge Distribution and Molecular Arrangement in the Pressure-Induced Metallic Phase of (DI-DCNQI) ₂ Ag IV-A-10 Study of the Phase Transitions of (DI-DCNQI) ₂ M (M = Ag, Li, Cu) through the Analys of the Temperature Dependent Vibronic and Vibrational Infrared Absorptions IV-A-11 Development of a High-Pressure Cell for Raman Measurement Using Sapphire Anvil - IV-A-12 Optical Study of Two-Dimensional Organic Metal (EO-TTP) ₂ AsF ₆ (EO-TTP=2-(4,5-ethylenedioxy-1,3-dithiol-2-ylidene)-5-(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) Microscopic Investigation of Molecular-Based Conductors IV-B-1 EPR Investigation of the Electronic States in β'-type [Pd(dmit) ₂] ₂ Compounds (where dmit is the 1,3-dithia-2-thione-4,5-dithiol-1
epar IV-A	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ IIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors IV-A-9 Charge and Molecular Arrangement in (DI-DCNQI) ₂ Ag Studied by Vibrational Spectra IV-A-9 Charge Distribution and Molecular Arrangement in the Pressure-Induced Metallic Phase of (DI-DCNQI) ₂ Ag
epar IV-A	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors IV-A-8 Charge and Molecular Arrangement in (DI-DCNQI) ₂ Ag Studied by Vibrational Spectra IV-A-9 Charge Distribution and Molecular Arrangement in the Pressure-Induced Metallic Phase of (DI-DCNQI) ₂ Ag IV-A-10 Study of the Phase Transitions of (DI-DCNQI) ₂ M (M = Ag, Li, Cu) through the Analys of the Temperature Dependent Vibronic and Vibrational Infrared Absorptions IV-A-11 Development of a High-Pressure Cell for Raman Measurement Using Sapphire Anvil - IV-A-12 Optical Study of Two-Dimensional Organic Metal (EO-TTP) ₂ AsF ₆ (EO-TTP=2-(4,5-ethylenedioxy-1,3-dithiol-2-ylidene)-5-(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) Microscopic Investigation of Molecular-Based Conductors IV-B-1 EPR Investigation of the Electronic States in β'-type [Pd(dmit) ₂] ₂ Compounds (where dmit is the 1,3-dithia-2-thione-4,5-dithiolato) IV-B-2 NMR Study of Charge Localized States of (TMTTF) ₂ Br IV-B-3 Magnetic Investigation of Possible Quasi-One-Dimensional Two-Leg Ladder Systems,
epar IV-A	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors IV-A-9 Charge Distribution and Molecular Arrangement in (DI-DCNQI) ₂ Ag Studied by Vibrational Spectra IV-A-10 Study of the Phase Transitions of (DI-DCNQI) ₂ M (M = Ag, Li, Cu) through the Analys of the Temperature Dependent Vibronic and Vibrational Infrared Absorptions IV-A-11 Development of a High-Pressure Cell for Raman Measurement Using Sapphire Anvil IV-A-12 Optical Study of Two-Dimensional Organic Metal (EO-TTP) ₂ AsF ₆ (EO-TTP=2-(4,5-ethylenedioxy-1,3-dithiol-2-ylidene)-5-(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) Microscopic Investigation of Molecular-Based Conductors IV-B-1 EPR Investigation of the Electronic States in β'-type [Pd(dmit) ₂] ₂ Compounds (where dmit is the 1,3-dithia-2-thione-4,5-dithiolato) IV-B-2 NMR Study of Charge Localized States of (TMTTF) ₂ Br IV-B-3 Magnetic Investigation of Possible Quasi-One-Dimensional Two-Leg Ladder Systems, (BDTFP) ₂ X(PhCl) ₀ 5 (X = PF ₆ , AsF ₆)
epar IV-A	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure
epar IV-A	tment of Molecular Assemblies Spectroscopic Study of Charge Carriers in Organic Conductors IV-A-1 Raman Study of the Charge Ordering in α-(BEDT-TTF) ₂ I ₃ at High Pressure IV-A-2 Raman Study of the Charge Ordering in α'-(BEDT-TTF) ₂ IBr ₂ at High Pressure IV-A-3 Charge Ordering in θ-(BEDT-TTF) ₂ TIM(SCN) ₄ (M = Co and Zn) Studied by Vibrational Spectroscopy IV-A-4 High-Pressure Raman Study on a 1/3-Filled System (BEDT-TTF) ₃ CuBr ₄ IV-A-5 Infrared and Raman Studies of the Charge Ordering in the Organic Semiconductor κ-[(Et) ₄ N](ET) ₄ Co(CN) ₆ ·3H ₂ O IV-A-6 Charge-Ordering and Magnetic Phase Transitions in θ-(BDT-TTP) ₂ Cu(NCS) ₂ IV-A-7 Spectroscopic Studies of Charge-Ordering System in Organic Conductors IV-A-9 Charge Distribution and Molecular Arrangement in (DI-DCNQI) ₂ Ag Studied by Vibrational Spectra IV-A-10 Study of the Phase Transitions of (DI-DCNQI) ₂ M (M = Ag, Li, Cu) through the Analys of the Temperature Dependent Vibronic and Vibrational Infrared Absorptions IV-A-11 Development of a High-Pressure Cell for Raman Measurement Using Sapphire Anvil IV-A-12 Optical Study of Two-Dimensional Organic Metal (EO-TTP) ₂ AsF ₆ (EO-TTP=2-(4,5-ethylenedioxy-1,3-dithiol-2-ylidene)-5-(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) Microscopic Investigation of Molecular-Based Conductors IV-B-1 EPR Investigation of the Electronic States in β'-type [Pd(dmit) ₂] ₂ Compounds (where dmit is the 1,3-dithia-2-thione-4,5-dithiolato) IV-B-2 NMR Study of Charge Localized States of (TMTTF) ₂ Br IV-B-3 Magnetic Investigation of Possible Quasi-One-Dimensional Two-Leg Ladder Systems, (BDTFP) ₂ X(PhCl) ₀ 5 (X = PF ₆ , AsF ₆)

	-, -	Magnetic Organic Superconductors and Related Systems	/ -
		IV-C-1 An Indication of Magnetic-Field-Induced Superconductivity	
		in a Bi-Functional Layered Organic Conductor, κ-(BETS) ₂ FeBr ₄	94
		IV-C-2 Dual-Action Molecular Superconductors with Magnetic Anions	94
		IV-C-3 A Series of Organic Conductors κ -(BETS) ₂ FeBr _x Cl _{4-x} ($0 \le x \le 4$) Exhibiting Successive	
		Antiferromagnetic and Superconducting Transitions	
		IV-C-4 Magnetic Molecular Conductors Based on BETS Molecules and Divalent Magnetic Anio	
		[BETS = Bis(ethylenedithio)tetraselenafulvalene]	
		IV-C-5 Crystal Structure of BETS ²⁺ Dication Salt (BETS)TlCl ₅ and Formal Charge Dependence	
		of Bond Lengths of BETS ^{+Q} ($Q = 0-2$)	96
		IV-C-6 Charge-Transfer Salt of $[C_{12}H_8S_4Se_4Cl_2]$ FeCl ₄ ·C ₆ H ₅ Cl	
		IV-C-7 A New Charge-Transfer Salt of (BETS) ₄ Fe ₂ (C ₂ O ₄) ₅	97
]	IV-D	Development of New Conducting Molecular Materials	97
		IV-D-1 Development of Conducting Crystals Based on Single-Component Transition Metal	
		Complex Molecules with Extended-TTF Ligands	97
		IV-D-2 A Conducting Crystal Based on a Single-Component Paramagnetic Molecule	
		$[Cu(dmdt)_2]$ (dmdt = dimethyltetrathiafulvalenedithiolate)	98
		IV-D-3 Novel π-Electron Donors for Magnetic Conductors Containing a PROXYL Radical	98
		IV-D-4 Novel TTP Donors Containing a PROXYL Radical for Magnetic Molecular Conductors	99
		IV-D-5 Synthesis and Physical Properties of New Molecular Conductors	
		Based on Lanthanoid Nitrate Complex Anions	99
]	IV-E	Control of Intermolecular Interactions with Chemical and Physical Methods	-100
		IV-E-1 Unique Structural and Physical Properties of Ni(dmit) ₂ Anion Radical Salts	
		Characterized by Short Te···S Contacts, where dmit = 1,3-dithiole-2-thione-4,5-dithiolate	-100
		IV-E-2 Uniaxial Strain Effect in the Two-Dimensional Strongly Correlated System,	
		β '-(CH ₃) ₄ As[Pd(dmit) ₂] ₂ (dmit = 1,3-dithiol-2-thione-4,5-dithiolate)	-100
]	IV-F	Synthetic Approach Toward Single Molecular Transistors	-102
		IV-F-1 Synthesis of Novel Ruthenium Complexes Optimized for Molecular Single Electron	
		Transistor	
		IV-F-2 Preparation of Porphyrin Wires Optimized for Molecular Field Effect Transistors	-102
		IV-F-3 Synthesis of Octopus Shaped Self Standing Molecular Jacks	-102
~			
RESI	н' 🕰 Т		
		RCH ACTIVITIES V	103
			103
De	par	tment of Applied Molecular Science	
De	par	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets	
De	par	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet	-103
De	epar V-A	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K	-103
De	epar V-A	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets	-103
De	epar V-A	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate	-103 -103 -104
De	epar V-A V-B	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with $T_{\rm C}$ of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and —Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties	-103 -104 -104
De	epar V-A V-B	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with $T_{\rm C}$ of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems	-103 -104 -104 -104
De	epar V-A V-B	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with $T_{\rm C}$ of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and —Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties	-103 -104 -104 -104
De	epar V-A V-B	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with $T_{\rm C}$ of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements	-103 -104 -104 -104 -104
De	epar V-A V-B	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T_C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate ($C_{14}H_8O_4$) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements in $S = 1$ Spin Ladder Substance BIP-TENO	-103 -104 -104 -104 -104
De	epar V-A V-B	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with $T_{\rm C}$ of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements in $S = 1$ Spin Ladder Substance BIP-TENO Organic Ferrimagnetism	-103 -104 -104 -104 -105 -105
De	epar V-A V-B	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T_C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate ($C_{14}H_8O_4$) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements in $S = 1$ Spin Ladder Substance BIP-TENO	-103 -104 -104 -104 -105 -105
De	epar V-A V-B V-C	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T_C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements in $S = 1$ Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism	-103 -104 -104 -104 -105 -105 -105
De	epar V-A V-B V-C	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T_C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ² : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements in $S = 1$ Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes	-103 -104 -104 -104 -105 -105 -105 -106
De	epar V-A V-B V-C	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T_C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ² : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements in $S = 1$ Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives	-103 -104 -104 -104 -105 -105 -105 -106
De	epar V-A V-B V-C	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with S = 1/2 and S = 1 V-C-2 Low Dimensionality Observed by ESR Measurements in S = 1 Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnetism of Mn Complexes with Bisaminoxylbenzene Derivatives	-103 -104 -104 -104 -105 -105 -105 -106
De	v-A V-B V-C V-D	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ² : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with S = 1/2 and S = 1 V-C-2 Low Dimensionality Observed by ESR Measurements in S = 1 Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives V-E-2 Pressure-Induced Metamagnetic Behavior in a Quasi-One-Dimensional Molecule-Based Ferrimagnet	-103 -104 -104 -104 -105 -105 -105 -106
De	v-A V-B V-C V-D	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ² : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with S = 1/2 and S = 1 V-C-2 Low Dimensionality Observed by ESR Measurements in S = 1 Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives V-E-2 Pressure-Induced Metamagnetic Behavior in a Quasi-One-Dimensional Molecule-Based Ferrimagnet	-103 -104 -104 -104 -105 -105 -105 -106
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ² : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with S = 1/2 and S = 1 V-C-2 Low Dimensionality Observed by ESR Measurements in S = 1 Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives V-E-2 Pressure-Induced Metamagnetic Behavior in a Quasi-One-Dimensional Molecule-Based Ferrimagnet Bioinorganic Studies on Structures and Functions of Non-Heme Metalloenzymes sing Model Complexes	-103 -104 -104 -104 -105 -105 -106 -106 -106
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and –Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ² : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with S = 1/2 and S = 1 V-C-2 Low Dimensionality Observed by ESR Measurements in S = 1 Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives V-E-2 Pressure-Induced Metamagnetic Behavior in a Quasi-One-Dimensional Molecule-Based Ferrimagnet Bioinorganic Studies on Structures and Functions of Non-Heme Metalloenzymes sing Model Complexes	-103 -104 -104 -104 -105 -105 -106 -106 -106
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and -Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with S = 1/2 and S = 1 V-C-2 Low Dimensionality Observed by ESR Measurements in S = 1 Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives V-E-2 Pressure-Induced Metamagnetic Behavior in a Quasi-One-Dimensional Molecule-Based Ferrimagnet Bioinorganic Studies on Structures and Functions of Non-Heme Metalloenzymes sing Model Complexes V-F-1 Novel Phosphate Bond Formation in a Cobalt(III) Complex System V-F-2 Syntheses and Structures of Tetrakis(1-methyluracilato)palladium Complexes	-103 -104 -104 -104 -105 -105 -106 -106 -107
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and -Ladder with 2,2'-Biphenyldicarboxylate (C ₁₄ H ₈ O ₄) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with S = 1/2 and S = 1 V-C-2 Low Dimensionality Observed by ESR Measurements in S = 1 Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives V-E-2 Pressure-Induced Metamagnetic Behavior in a Quasi-One-Dimensional Molecule-Based Ferrimagnet Bioinorganic Studies on Structures and Functions of Non-Heme Metalloenzymes sing Model Complexes V-F-1 Novel Phosphate Bond Formation in a Cobalt(III) Complex System V-F-2 Syntheses and Structures of Tetrakis(1-methyluracilato)palladium Complexes	-103 -104 -104 -104 -105 -105 -106 -106 -107
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K	-103 -104 -104 -104 -105 -105 -106 -106 -107
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T_C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and -Ladder with 2,2'-Biphenyldicarboxylate ($C_{14}H_8O_4$) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements in $S = 1$ Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives	-103 -104 -104 -104 -105 -105 -106 -106 -107 -107
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T_C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and -Ladder with 2,2'-Biphenyldicarboxylate ($C_{14}H_8O_4$) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements in $S = 1$ Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives	-103 -104 -104 -104 -105 -105 -106 -106 -107 -107
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T_C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and -Ladder with 2,2'-Biphenyldicarboxylate ($C_{14}H_8O_4$) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements in $S = 1$ Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives V-E-2 Pressure-Induced Metamagnetic Behavior in a Quasi-One-Dimensional Molecule-Based Ferrimagnet Bioinorganic Studies on Structures and Functions of Non-Heme Metalloenzymes sing Model Complexes V-F-1 Novel Phosphate Bond Formation in a Cobalt(III) Complex System V-F-2 Syntheses and Structures of Tetrakis(1-methyluracilato)palladium Complexes Capturing Alkali Metal Ions. A New Type of Metallo-Podand V-F-3 Investigations of the Effects of Intramolecular Hydrogen Bonding Networks on Tripodal Trihydroxamate-Type Artificial Siderophores V-F-4 The Role of the Zn(II) Site in Cu,Zn SOD (1). Synthesis and Characterization	-103 -104 -104 -104 -105 -105 -106 -106 -107 -107
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T_C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and -Ladder with 2,2'-Biphenyldicarboxylate ($C_{14}H_8O_4$) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with $S = 1/2$ and $S = 1$ V-C-2 Low Dimensionality Observed by ESR Measurements in $S = 1$ Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives	-103 -104 -104 -104 -105 -105 -106 -106 -107 -107
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and -Ladder with 2,2'-Biphenyldicarboxylate (C14H ₈ O ₄) ²⁻ : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with S = 1/2 and S = 1 V-C-2 Low Dimensionality Observed by ESR Measurements in S = 1 Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnets of Mn Complexes with Bisaminoxylbenzene Derivatives V-E-2 Pressure-Induced Metamagnetic Behavior in a Quasi-One-Dimensional Molecule-Based Ferrimagnet Bioinorganic Studies on Structures and Functions of Non-Heme Metalloenzymes sing Model Complexes V-F-1 Novel Phosphate Bond Formation in a Cobalt(III) Complex System V-F-2 Syntheses and Structures of Tetrakis(1-methyluracilato)palladium Complexes Capturing Alkali Metal Ions. A New Type of Metallo-Podand V-F-3 Investigations of the Effects of Intramolecular Hydrogen Bonding Networks on Tripodal Trihydroxamate-Type Artificial Siderophores V-F-4 The Role of the Zn(II) Site in Cu,Zn SOD (1). Synthesis and Characterization of Novel Hydroperoxo-Zinc(II) Intermediates V-F-5 Epoxidation Activities of Mononuclear Ruthenium-oxo Complexes with a Square Planar 6,6'-Bis(benzoylamino)-2,2'-bipyridine and Axial Ligands	-103 -104 -104 -104 -105 -105 -106 -106 -107 -107 -107 -107 -108
De	V-B V-C V-E V-F V-F	tment of Applied Molecular Science Synthesis of Chiral Molecule-Based Magnets V-A-1 Structure and Magnetic Properties of a Chiral Two-dimensional Ferrimagnet with T _C of 38 K Hydrothermal Synthesis of Molecule-Based Magnets V-B-1 Self-Organized Metallo-Helicates and -Ladder with 2,2'-Biphenyldicarboxylate (C14H8O4) ² : Synthesis, Crystal Structures, and Magnetic Properties Synthesis and Characterization of Quantum-Spin Systems V-C-1 Magnetic Properties of Organic Two-Leg Spin Ladder Systems with S = 1/2 and S = 1 V-C-2 Low Dimensionality Observed by ESR Measurements in S = 1 Spin Ladder Substance BIP-TENO Organic Ferrimagnetism V-D-1 Magnetic Properties on an Organic Ferrimagnetic Compound and Related Materials Pressure Effects on Molecular Magnetism V-E-1 Pressure Effects on Molecular Magnetis of Mn Complexes with Bisaminoxylbenzene Derivatives V-E-2 Pressure-Induced Metamagnetic Behavior in a Quasi-One-Dimensional Molecule-Based Ferrimagnet Bioinorganic Studies on Structures and Functions of Non-Heme Metalloenzymes sing Model Complexes V-F-1 Novel Phosphate Bond Formation in a Cobalt(III) Complex System V-F-2 Syntheses and Structures of Tetrakis(1-methyluracilato)palladium Complexes Capturing Alkali Metal Ions. A New Type of Metallo-Podand V-F-3 Investigations of the Effects of Intramolecular Hydrogen Bonding Networks on Tripodal Trihydroxamate-Type Artificial Siderophores V-F-4 The Role of the Zn(II) Site in Cu,Zn SOD (1). Synthesis and Characterization of Novel Hydroperoxo-Zinc(II) Intermediates V-F-5 Epoxidation Activities of Mononuclear Ruthenium-oxo Complexes	-103 -104 -104 -104 -105 -105 -106 -106 -107 -107 -107 -107 -108

SEARCH ACTIVITIES VI	123
Department of Vacuum UV Photoscience	
VI-A Electronic Structure and Decay Mechanism of Inner-Shell Excited Molecules	123
VI-A-1 Spin-Forbidden Shake-Up States in the Valence Ionization of CS ₂	
VI-A-2 Spin- and Symmetry Forbidden Ionized States of OCS Molecule	123
VI-A-3 Measurements of Sulfur 2p Photoelectron and Sulfur L-emission of SF ₆	
at Sulfur 2p Resonances	124
VI-A-4 N 1s Photoabsorption of N ₂ Trapped in Rare Gas Matrices	124
VI-A-5 Ab Initio CI Calculation for O1s $\rightarrow \sigma^*$ Core-Excited States of Ozone:	
Difference in Direction between Transition Dipole Moment and Photodissociation	125
VI-B Soft X-Ray Photoelectron-Photoabsorption Spectroscopy and Electronic Structure	
of Transition Metal Compounds	126
VI-B-1 B 1s- and La 4d-Edge Photoabsorption and Resonant Photoelectron Spectroscopy of Rare-Earth Borocarbide LaB ₂ C ₂	100
of Rare-Earth Borocarbide LaB ₂ C ₂	126
VI-C Observation of Vibrational Coherence (Wavepacket Motion) in Solution-Phase Molecules Using Ultrashort Pulses	127
VI-C-1 Excited-State Vibrational Coherence of Solution-Phase Molecules	12/
Observed in the Third-Order Optical Process Using Extremely Short Pulses	127
VI_D Studies of Primary Photochemical/Physical Processes	
Using Femtosecond Electronic Spectroscopy	127
VI-D-1 Femtosecond/Picosecond Time-Resolved Spectroscopy of Trans-Azobenzene:	12/
Isomerization Mechanism Following S_2 ($\pi\pi^*$) $\leftarrow S_0$ Photoexcitation	128
VI-D-2 Ultrafast Fluorescence of the Chromophore of the Green Fluorescent Protein	120
in Alcohol Solutions	128
VI-D-3 Femtosecond Study of Solvation Dynamics of DCM in Micelles	
VI-E Studies of Photochemical Reactions Using Picosecond Time-Resolved	
Vibrational Spectroscopy	129
VI-E-1 Picosecond Time-Resolved Raman Study of the Solvated Electron in Water	
VI-E-2 Observation of Resonance Hyper-Raman Scattering from all-trans-Retinal	129
VI-F Synchrotron Radiation Stimulated Surface Reaction and Nanoscience	131
VI-F-1 Patterning SiO ₂ Thin Films Using Synchrotron Radiation Stimulated Etching	
with a Co Contact Mask	
VI-G Noble Semiconductor Surface Vibration Spectroscopy	
VI-G-1 Infrared Reflection Absorption Spectroscopy Using CoSi ₂ Buried Metal Layer Substrate Made by Wafer-Bonding	122
VI-G-2 Hydrogen Diffusion and Chemical Reactivity with Water on Nearly Ideally H-Termina	132 od
Si(100) Surface	132
VI-G-3 Atomic Hydrogen-Induced Oxidation on Water-Adsorbed Si(100)-(2×1) Surfaces	
VI-H Integration of Bio-Functional Materials on Silicon	
VI-H-1 Hydrophobic/Hydrophilic Interactions of Cytochrome <i>c</i>	200
with Functionalized Self-Assembled Monolayers on Silicon	133
VI-H-2 Influence of Substrate Roughness on the Formation	
of Self-Assembled Monolayers (SAM) on Silicon(100)	134
VI-I Photoionization and Photodissociation Dynamics	
Studied by Electron and Fluorescence Spectroscopy	135
VI-I-1 Formation and Autoionization of a Dipole-Forbidden Superexcited State of CS ₂	135
VI-I-2 Autoionization and Neutral Dissociation of Superexcited HI	
Studied by Two-Dimensional Photoelectron Spectroscopy	135
VI-I-3 Development of the Apparatus for High-Resolution Dispersed Spectroscopy	a .= -
and Fluorescence Excitation Spectroscopy at BL3A2	135
VI-I-4 UV and Visible Dispersed Spectroscopy for the Photofragments	100
Produced from H ₂ O in the Extreme Ultraviolet	136
VI-J Vacuum UV Spectroscopy Making Use of a Combination of Synchrotron Radiation	125
and a Mode-Locked or Pulsed UV Laser	15/
VI-J-1 Partial Photoionization Cross Sections for $N_2^+(X^2\Sigma_g^+, \nu_x = 0, 1)$ Measured by a Laser Synchrotron Radiation Combination Technique	127
VI-K Extreme UV Photoionization Studies by Employing a Dragon-Type Grazing-Incidence	13/
Monochromator	138
VI-K-1 Anisotropy of Fragment Ions from SF ₆ by Photoexcitation	-130
of a Valence- or Sulfur 2p- Electron between 23 and 210 eV	138
VI-K-2 Construction of the Photoionization Spectrometer for Fullerenes and Metallofullerenes	
VI-K-3 Photoion Yield Spectra of C ₆₀ in the Region of 23–210 eV	
- · · · · · · · · · · · · · · · · · · ·	

SEARCH ACTIVITIES VII	141
Coordination Chamistry I aboratories	
Coordination Chemistry Laboratories VII A. Davidsment of Navel Transition Metal Complex Catalysts Having MOR Ligands	1/1
VII-A Development of Novel Transition Metal Complex Catalysts Having MOP Ligands	-141
Ligand Modification and Mechanistic Studies	1/11
VII-A-2 Modification of Chiral Monodentate Phosphine Ligands (MOP)	-141
for Palladium-Catalyzed Asymmetric Hydrosilylation of Cyclic 1,3-Dienes	_1/11
VII-A-3 (R)-2-Diphenylphosphino-2'-methoxy-1,1'-binaphthyl	-141
VII-A-5 (K)-2-Diphenyiphosphino-2 - inchoxy-1,1 - omaphinyi	147
VII-B-1 Amphiphilic Resin-Supported Rhodium—Phosphine Catalysts	-172
for C–C Bond Forming Reactions in Water	_1/12
VII-B-2 Double Carbonylation of Aryl Iodides with Primary Amines	-172
under Atmospheric Pressure Conditions Using Pd/PPh ₃ /DABCO/THF System	142
VII-C Electrochemical Analysis of Biological Functions of Metalloproteins and their Mutated	1 12
Molecules and its Applications to Coordination Chemistry for Catalysis	-143
VII-C-1 Effects of Alkyl Chain as a Spacer on Electrochemical Reaction and SEIRA Spectra	140
for Self-Assembled Monolayer Having Anthraquinone Redox Center	143
VII-C-2. Analysis of Biological Functions of Metalloproteins	
Using Biocompatible Modified Electrodes	-143
VII-C-3 Interfacial Structures of Self-Assembled Monolayers of 2-Pyridinethiol	1.0
on Au(111) Studied by In Situ Tunneling Microscopy	143
VII-C-4 NADP ⁺ Sensor on Chrorella Ferredoxin/Ferredoxin-NADP ⁺ -Reductase	1.0
Modified Indium Oxides	143
VII-C-5 Surface pKa of Amine-Terminated Self-Assembled Monolayers Evaluated by Direct	
Observation of Counter Anion by FT-Surface Enhanced Raman Spectroscopy	144
VII-C-6 Ion Selectivity for Electrode Reactions on Functionalized Monolayer	
Modified Electrode	144
VII-C-7 In-Situ STM Observation of Coronene Epitaxial Adlayers on Au(111) Surfaces	
Prepared by the Transfer of Langmuir Films	-144
VII-C-8 New Route to Protoporphyrins III and XIII from Common Starting Pyrroles	144
VII-D Nano-Sciences of Advanced Metal Complexes	
VII-D-1 Tuning of Electronic Structures of Quasi-One-Dimensional Bromo-Bridged Ni(III)	
Complexes with Strong Electron-Correlation	
by Doping of Co(III) Ions, $[Ni_{1-x}Co_x(chxn)_2Br]Br_2$	145
VII-D-2 Angle-Resolved Photoemission Study of the MX-Chain Compound [Ni(chxn) ₂ Br]Br ₂ :	
Spin-Charge Separation in Hybridized <i>d-p</i> Chains	145
VII-D-3 ESR Detection of Induced Spin Moments in Halogen-Bridged Mixed-Metal Complexe	ı
$Ni_{1-x}Pd_x(chxn)_2Br_3$	
VII-D-4 A Chemical Modification of a Mn ₁₂ Single-Molecule Magnet	
by Replacing Carboxylate Anions with Diphenylphosphate Anions	-146
VII-D-5 Construction of a One-Dimensional Chain Composed of Mn ₆ Clusters and 4,4'-Bipyric	ine
Linker: The First Step for Creation of "Nano-Dots-Wires"	
VII-D-6 Framework Engineering by Anions and Porous Functionalities Cu(II)/4,4'-bpy	
Coordination Polymers	-147
VII-D-7 New Microporous Coordination Polymer Affording Guest-Coordination Sites	
at Channel Walls	-147
VII-E Large Macrocycle Formation Assisted by Coordination Bonds	-148
VII-E-1 Solution and Solid-State Characterization of a Dicopper Receptor for Large Substrates	
VII-F Development of New Carbonylation Reactions	-149
VII-F-1 Ru ₃ (CO) ₁₂ -Catalyzed Coupling Reaction of sp ³ C–H Bonds Adjacent	
to a Nitrogen Atom in Alkylamines with Alkenes	149
VII-F-2 Catalytic Carbonylation Reactions of Benzyne Derivatives	-149
VII-G Development of Cycloisomerization Reactions	-149
VII-G-1 Cycloisomerization of ω-Aryl-1-Alkynes: GaCl ₃ as a Highly Electrophilic Catalyst	-
for Alkyne Activation	-149
VII-H Multi-Electron Reduction of Carbon Dioxide through Metal-Carbonyl and Oxidative	
Activation of Water via Metal-Oxo Complexes	-151
VII-H-1 Syntheses of New Ruthenium Carbonyl Terpyridine <i>o</i> -Phenylene Complexes:	
Strong Interaction between Carbonyl and <i>o</i> -Phenylene Ligands	-151
VII-H-2 Synthesis and Redox Properties of Bis(ruthenium-hydroxo)complexes	
with Quinone and Bipyridine Ligand as a Water-Oxidation Catalysts	151
VII-H-3 Ruthenium Terpyridine Complexes with Mono- and Bi-Dentate Dithiolene Ligands	-152

	VII-H-4 A Ru-Carbene Complex with a Metallacycle	
	Involving a 1,8-Naphthylidine Framework	152
	VII-H-5 Ruthenium Oxyl Radical Complex Containing o-Quinone Ligand	
	Detected by ESR Measurements of Spin Trapping Technique	152
	VII-H-6 Multi-Electron Reduction of CO ₂ via Ru-CO ₂ -C(O)OH, -CO, -CHO,	
	and -CH ₂ OH Species	153
VII-I	Silanechalcogenolato Complexes	154
	VII-I-1 Palladium Dimethylsilanedithiolato Complex: a Precursor for Ti-Pd and Ti-Pd ₂	1.7.4
	Heterometallic Complexes	
	VII-I-2 Synthesis and Reactions of Triphenylsilanethiolato Complexes of Manganese(II), Iron(II),	1 ~ 4
X/II T	Cobalt(II), and Nickel(II)	154 1 <i>55</i>
V11-J	Coordination Chemistry of New Multidentate Ligands and Activation of Small Molecules	155
	VII-J-1 Binuclear Iron(II) Complex from a Linked-bis(amidinate) Ligand: Synthesis and its Reaction with Carbon Monoxide	155
		133
	VII-J-2 Synthesis and Structures of Ti(III) and Ti(IV) Complexes Supported by a Tridentate Aryloxide Ligand	155
	VII-J-3 Dinitrogen-Bond Cleavage in a Niobium Complex	133
	Supported by a Tridentate Aryloxide Ligand	155
VII K	Supported by a Tridemate Arytoxide Ligand Synthesis of Compounds Having a Novel Bonding	133
VII-N	ontaining Heavier Main Group Elements	156
Ct	VII-K-1 Syntheses and Crystal Structures of the First Disulfur and Diselenium Complexes	150
	of Platinum	156
	VII-K-2 Synthesis and Structure of the First Stable Phosphabismuthene	
	VII-K-3 Synthesis of Kineically Stabilized Silaneselone and Silanetellone	157
	VII-K-4 The First Stable 9-Silaanthracene	157
	VII-K-5 Synthesis and Characterization of an Extremely Hindered	157
	Tetraaryl-Substituted Digermene and its Unique Properties in the Solid State and in Solution -	158
	VII-K-6 Syntheses, Structures and Properties of Kinetically Stabilized Distibenes	
	and Dibismuthenes, Novel Doubly Bonded Systems between Heavier Goup 15 Elements	158
	VII-K-7 Synthesis and Properties of the First Stable Germabenzene	159
	VII-K-8 Reactions of 2-Germanaphthalene with Elemental Sulfur and Selenium:	
	Synthesis of Novel Cyclic Polychalcogenides	
	Containing a Germanium, Trichalcogenagermolanes	159
	VII-K-9 Synthesis and Properties of the First Stable 1-Silanaphthalene	160
	VII-K-10 Synthesis and Isolation of the First Germacyclopropabenzene: A Study to Elucidate	
	the Intrinsic Factor for the Ring Deformation of Cyclopropabenzene Skeletons	160
VII-L	Precise Synthesis of Functional Macromolecules Using Organometallic Complexes	
	VII-L-1 Helical Poly(aryl isocyanide)s Possessing Chiral Alkoxycarbonyl Groups	
	VII-L-2 Formation of an Optically Active Helical Polyisocyanide Langmuir-Blodgett Film	162
	VII-L-3 Helical Chiral Polyisocyanides Possessing Porphyrin Pendants:	
	Determination of Helicity by Exciton Coupled Circular Dichroism	162
DECEAR		<i>(</i> 2
RESEAF	RCH ACTIVITIES VIII1	03
T	Demonstrate Control for Male colon Colons	
	Research Center for Molecular Science	
VIII-2	A Developments and Researches of New Laser Materials	
	VIII-A-1 Ce3+:LiCaAlF6 Crystal for High-Gain or High-Peak-Power Amplification of Ultraviole	i 1 co
	Femtosecond Pulses and New Potential Ultraviolet Gain Medium: Ce ³⁺ :LiSr _{0.8} Ca _{0.2} AlF ₆	163
	VIII-A-2 Optical Fiber for Deep Ultraviolet Light	163
	VIII-A-3 Crystal Growth of Fluorides for Optical Applications	163
	VIII-A-4 Growth of Ce-Doped Colquiriite- and Scheelite-Type Single Crystals	1 (1
	for UV Laser Applications	104
	VIII-A-5 High-Energy Pulse Generation from Solid-State Ultraviolet Lasers	161
	Using Large Ce:Fluoride Crystals	104
	VIII-A-6 New Adjustment Technique for Time Coincidence of Femtosecond Laser Pulses Using	165
	Third Harmonic Generation in Air and its Application to Holograph Encoding System	103
	VIII-A-7 Hybrid Time-Resolved Spectroscopic System for Evaluating Laser Material Using a Table Top Sized Low litter 3 MeV Picosecond Electron Beam Source	
	Using a Table-Top-Sized, Low-Jitter, 3-MeV Picosecond Electron-Beam Source with a Photocathode	165
	VIII-A-8 Simultaneous Measurement of Thickness and Water Content of Thin Black Ink Films	103
	for the Printing Using THz Radiation	165
	VIII-A-9 Far-Infrared Absorption Measurements of Polypeptides and Cytochrome <i>c</i>	. 00
	by THz Radiation	166
	-,	- 55

VIII-A-10 0.43 J, 10 Hz Fourth Harmonic Generation of Nd:YAG Laser	
Using Large Li ₂ B ₄ O ₇ Crystals	166
VIII-A-11 Electron-Beam Excitation of a Ce ³⁺ :LiCaAlF ₆ Crystal	
for Future High-Peak-Power UV Lasers	166
VIII-B Development and Research of Advanced Tunable Solid State Lasers	168
VIII-B-1 Thermal-Birefringence-Induced Depolarization in Nd: YAG Ceramics	168
VIII-B-2 Intrinsic Reduction of the Depolarization Loss in Solid-State Lasers by Use of a (110)-Cut Y ₃ Al ₅ O ₁₂ Crystal	160
VIII-B-3 The Effect of Nd Concentration on the Spectroscopic and Emission Decay Properties	109
of Highly-Doped Nd:YAG Ceramics	169
VIII-B-4 Spectroscopy and Laser Emission under Hot Band Resonant Pumping	10)
in Highly Doped Nd:YAG Ceramics	171
VIII-B-5 Efficient Laser Emission in Concentrated Nd Laser Materials under Pumping	
into the Emitting Level	172
VIII-B-6 1064-nm Laser Emission of Highly Doped Nd: Yttrium Aluminium Garnet	
under 885-nm Diode Laser Pumping	174
VIII-B-7 Diode Edge-Pumped Microchip Composite Yb:YAG Laser	175
Research Center for Molecular-Scale Nanoscience	
VIII-C Development of Organic Semiconductors for Molecular Thin-Film Devices	177
VIII-C-1 Perfluoro-1,3,5-tris(p-Oligophenyl)benzenes: Amorphous Electron-Transport Materia	
with High Glass-Transition Temperature and High Electron Mobility	
VIII-C-2 Synthesis and Properties of Iridium Complexes	1//
Bearing Perfluoroaryl-Substituted 2-Phenylpyridine	177
VIII-D Field Effect Transistors with Organic Semiconductors	179
VIII-D-1 Electrical Characteristics of Phathalocyanine Films	
Prepared by Electrophoretic Deposition	179
VIII-D-2 BTQBT (bis-(1,2,5-thiadiazolo)-p-Quinobis(1,3-dithiole)) Thin Films;	
A Promising Candidate for High Mobility Organic Transistors	179
VIII-D-3 Field Effect Transistors of BTQBT and Its Derivatives	179
VIII-D-4 Preparation of Nanometer-Gap Electrodes for Field Effect Transistors	100
by Electroplating	
VIII-E Preparation and Characterization of Highly Ordered Molecular Films on Silicon Bound with Si-C Covalent Bond	
VIII-E-1 Force Curve Measurement of Self-Assembled Organic Monolayers Bound	100
Covalently on Silicon(111)	180
VIII-E-2 Atomic Force Microscope Anodization of Si(111) Covered with Alkyl Monolayers	
VIII-E-3 Nanopatterning of Alkyl Monolayers Covalently Bound to Si(111)	
with an Atomic Force Microscope	181
VIII-F Development of Precisely-Defined Macromolecules and their Organization	
on Substrate Surfaces for Molecular-Scale Electronics Circuits	182
VIII-F-1 Design and Synthesis of Molecular Junction and Anchor Modules	
for Multi-Function Integrated Macromolecules	182
VIII-G Development of Novel Heterocyclic Compounds and their Molecular Assemblies for Advanced Materials	103
VIII-G-1 Crystal Engineering Using Anilic Acids and Dipyridyl Compounds	182
through a New Supramolecular Synthon	182
VIII-G-2 Bis(tetra-n-butylammonium) Bis(2-dicyanomethylene-4,5-dimercapto-1,3-	102
dithiole)nickel(II)	183
VIII-G-3 ¹ H NMR Analysis and Crystal Structures of 1,1',3,3'-Tetramethyl-2,2'-bi-1 <i>H</i> -	105
Imidazolium Bis(tetraphenylborate): Ion-Associative Interactions	
Containing Ketone, Aldehyde, and Nitrile	183
VIII-G-4 4,7-Diiodo-2,1,3-Benzothiadiazole and 7,7'-Diiodo-4,4'-bis(2,1,3-benzothiadiazole)	184
VIII-G-5 Synthesis and Properties of π-Extended TTF Analogues and Their Cation Radical	
and Dication Salts	184
VIII-G-6 Synthesis and Structure of Bi- and Terthiophene Derivatives	
Having 4-Pyridylethynyl Substituents	184
VIII-H Designing Artificial Photosynthesis at Molecular Dimensions	185
VIII-H-1 Photoinduced Oxidation of Alcohols Catalyzed by Porphyrins and TEMPO	185
VIII-I Development of New Metal Complexes as Redox Catalysts	106 106
VIII-I-1 Syntheses of a 6-(2-Pyrroly1)-2,2 -Bipyridine Derivative and its Ruthemum Complex VIII-J Electronic Properties of Monolayer-Protected Metal Clusters	
VIII-J-1 Development of Mass Spectrometer for Clusters	
The Total of the support of the supp	10/

VIII-J-2 Formation of $Pd_n(SR)_m$ Clusters $(n < 60)$	
in the Reactions of PdCl ₂ and RSH (R = n -C ₁₈ H ₃₇ , n -C ₁₂ H ₂₅)	187
VIII-J-3 Size-Selective Preparation of Water-Soluble Gold Clusters	-188
VIII-J-4 Characterization and Purification of Pd:SR Nanoparticles	
by Gel Permeation Chromatography	-188
VIII-K Structures and Dynamics of Molecular Cluster Ions	
VIII-K-1 Structural Evolution of Large $(CO_2)_n$ Clusters as Studied by Mass Spectrometry	
VIII-K-2 Photochemistry of $(NO)_n^-$ as Studied by Photofragment Mass Spectrometry	-190
VIII-L Rotational Echo Double Resonance (REDOR) Experiments	
with Overtone Adiabatic Inversion Pulses	191
VIII-L-1 The Observation of REDOR Phenomena for Solid-State ¹³ C– ¹⁴ N Spin Systems	
with the Help of Overtone Adiabatic Inversion Pulses	-191
VIII-M Nanoscale Characterization of Heterogeneous Catalyst Surfaces	192
VIII-M-1 Determination of Extra-Framework Cation Positions and Their Occupancies	400
on Heulandite(010) by Atomic Force Microscopy	192
VIII-M-2 Molecular Orbital Interpretation of Thymine/Graphite NC-AFM Images	-192
VIII-M-3 Partial Reduction of Si(IV) in SiO ₂ Thin Film by Deposited Metal Particles	400
—An XPS Study	.192
VIII-M-4 Apparent Local Structural Change Caused by Ultraviolet Light on a TiO ₂ Surface	100
Observed by Scanning Tunneling Microscopy	192
VIII-M-5 Various Phases on Natural Stilbite (010) Surface	100
Observed by Atomic Force Microscopy under Aqueous Conditions	192
VIII-N Studies of Electronic Structure of Organic Thin Films and Organic/Inorganic Interfaces	104
by Electron Spectroscopies	194
VIII-N-1 Low Energy Electron Diffraction of the System In-[perylene-3,4,9,10-tetracarboxylic	10/
Dianhydride] on MoS ₂ VIII-N-2 Electronic Structure and Molecular Orientation at Thin Film Surfaces of Pendant-Group	·194
Polymers Studied by Outermost Surface Spectroscopy Using Metastable Atoms	194
VIII-N-3 Photodegradation of Poly(tetrafluoroethylene) and Poly(vinylidenefluoride) Thin Films by Inner Shell Excitation	105
	193
VIII-N-4 Intramolecular Energy-Band Dispersion in Oriented Thin Film of <i>n</i> -CF ₃ (CF ₂) ₂₂ CF ₃ Observed by Angle-Resolved UV Photoemission and its Theoretical Simulation	105
VIII-O Study on Compact X-Ray Sources	104
VIII-O-1 Study on Radiation Shielding for Small Synchrotron Radiation Facilities	
VIII-O-1 Study on Radiation Shielding for Shian Sylcinotion Radiation Pacintles VIII-P Syntheses of Fullerene-Based New Materials with Novel Physical Properties	
VIII-P-1 Pressure and Temperature Dependences of the Structural Properties	1)/
of Dy@C ₈₂ Isomer I	197
VIII-P-2 Ferromagnetism and Giant Magnetoresistance	1)/
in the Rare-Earth Fullerides $Eu_{6-x}Sr_xC_{60}$.197
VIII-P-3 Bridging Fullerenes with Metals	.197
VIII-P-4 Structure and Physical Properties of $Cs_{3+\alpha}C_{60}$ ($\alpha = 0.0-1.0$)	1)/
under Ambient and High Pressures	197
VIII-P-5 Complex-Plane Impedance Study on a Hydrogen-Doped Copper Coordination Polymer:	1,
N,N'-bis(2-hydroxyethyl)Dithiooxamidatocopper(II)	198
VIII-P-6 Crystal Structure and Electronic Transport of Dy@C ₈₂	-198
VIII-P-7 <i>N</i> -Channel Field-Transistors with Thin Films of Fullerenes	-198
VIII-P-8 STM Study of Dy@C ₈₂ on Si(111)-(7×7) Surface	
VIII-Q Effects of High Magnetic Field on Chemical Process	199
VIII-Q-1 Magnetic Field Effects on Anodic Oxidation of Potassium Iodide	199
VIII-Q-2 High Magnetic Field Effect on the Growth of 3-Dimensional Silver Dendrites	-199
VIII-R Theoretical and Computational Study on Gas Phase Reactions and Chromic Molecules	-200
VIII-R-1 Polycyano–Polycadmate Host Clathrates Including a Methylviologen Dication.	
Syntheses, Crystal Structures and Photo-Induced Reduction of Methylviologen Dication	-200
VIII-R-2 IR Absorption Spectra of Electrochromic WO ₃ Films	-200
VIII-R-3 A Local Interpolation Scheme Using No Derivatives in Potential Sampling:	
Application to $O(^1D)$ + H_2 System	-200
VIII-R-4 Theoretical Study on Photoinduced Color Change and Charge Transfer	
of Methylviologen	-200
VIII-R-5 Potential Energy Surface Generation Using Ab Initio Calculations and IMLS/Shepard	
Interpolation for the LiH + H \rightleftharpoons Li + H ₂ Reactions	-201
VIII-S Macromolecular Self-Assembly Opens a Way to the Development of Novel Materials	
that Have Characteristics of Cellular Systems	202
VIII-S-1 Fabrication of "Entropy-Saving" Nano-Solar-Cells	-202

VIII-S-2 Model Study on Signaling Behaviors of Scaffold Proteins	202
—Toward its Application to Novel Computing Devices—	202
VIII-S-3 Physicochemical Studies on the Molecular Mechanism of Photosynthesis	202
Equipment Development Center	
VIII-T Development of "Special Machine"	204
VIII-T-1 Development of Twin-Probe Scanning Tunneling Microscope	204
	_0.
Ultraviolet Synchrotron Orbital Radiation Facility	
VIII-U Development of the UVSOR Light Source	205
VIII-U-1 Development of Lattice Components for UVSOR Upgrade Project	
VIII-U-2 Storage Ring Free Electron Laser	205
VIII-U-3 Ion Trapping at UVSOR	
VIII-U-4 Design Study of Vacuum System Improvement	205
VIII-V Researches by the USE of UVSOR	206
VIII-V-1 Non-Radiative Decay of the Core Excitons in Auger-Free Luminescence Materials,	206
CsCl and BaF ₂	206
VIII-V-2 Photoelectron Spectroscopic Study on Photo-Induced Phase Transition of Spin-Crossover Complex	206
VIII-V-3 Surface-Photovoltage Effect in GaAs-GaAsP Super-Lattice Studied	200
with Combination of Synchrotron Radiation and the Laser	206
VIII-V-4 Pump/Probe Experiments with FEL and SR Pulses at UVSOR	206 206
VIII-V-5 Angle-Resolved Photoion Spectra of SO ₂	
VIII-V-6 The Measurement of Absorption Spectra of Trifluoromethyl Sulfur Pentafluoride	207
in VUV Region	207
VIII-V-7 Symmetry-Resolved Cl 2p Photoabsorption Spectra of Cl ₂	208
VIII-V-8 Dynamical Angular Correlation in Molecular Auger Decay	208
VIII-V-9 Nondipolar Electron Angular Distributions from Fixed-in-Space Molecules	209
VIII-V-10 Double and Triple Excitations Near the K-Shell Ionization Threshold of N ₂	
Revealed by Symmetry-Resolved Spectroscopy	209
VIII-V-11 Optical and Magneto-Optical Studies on Electronic Structure of CeSb	
in the Magnetically Ordered States	209
VIII-V-12 Low Energy Electronic Structure of $Ce_{1-x}La_xSb$ ($x = 0, 0.1$)	200
in the Magnetically Ordered States	209
VIII-V-13 Temperature Dependence of Low-Energy Optical Conductivity of $Yb_4(As_{1-x}P_x)_3$ ($x = 0, 0.05, 0.15$)	200
VIII-V-14 Charge Ordering Effect of Electronic Structure of $Yb_4(As_{1-x}Sb_x)_3$	210
VIII-V-14 Charge Ordering Effect of Electronic Structure of To ₄ (As _{1-x} o _x) ₃	210
Studied by Eu 4 <i>d</i> -4 <i>f</i> Resonant Photoemission and Optical Conductivity	210
VIII-V-16 Optical Gap in the Diluted Kondo Semiconductors $Yb_{1-x}Lu_xB_{12}$:	210
Lattice and Single-Site Effects	210
VIII-V-17 Magneto-Optical Study of the Colossal Magnetoresistance Pyrochlore Tl ₂ Mn ₂ O ₇	210
VIII-V-18 Influence of Electronic Structure of CeSbNi _{0.15} on its Optical Conductivity	210
Computer Center	
VIIÎ-W Computer Simulation of Quantum Systems in Condensed Phase	211
VIII-W-1 Vibrational Energy Transfer from Solute to Solvent:	
An Analysis Based upon Path Integral Influence Functional Theory	211
and Mixed Quantum-Classical Molecular Dynamics Method	211
VIII-X Molecular Dynamics Study of Classical Complex Systems	211
VIII-X-1 A Molecular Dynamics Study of Water Penetration into BiomembraneVIII-X-2 Molecular Dynamics Study of Mechanical Extension of Polyalanine	211
by AFM Cantilever	211
VIII-Y Theoretical Studies on Electronic Structure and Dynamics	211
of Electronically Excited States	212
VIII-Y-1 Chemical Reactions in the O(¹ D) + HCl System I. <i>Ab Initio</i> Global Potential Energy	
Surfaces for the 1 ¹ A', 2 ¹ A', and 1 ¹ A'' States	212
VIII-Y-2 Millimeter-Wave Spectroscopy of the Internal-Rotation Band of the He-HCN Comp	lex
and the Intermolecular Potential Energy Surface	212
VIII-Y-3 Determination of the Global Potential Energy Surfaces and Transition Wave Packet	
Dynamics for Polyatomic Systems	212
VIII-Y-4 <i>Ab Initio</i> Study of Conformers of <i>p-tert</i> -Butylcalix [4] Crown-6-Ether Complexed	
with Alkyl Ammonium Cations	213

	VIII-Y-5 Ab Initio Study of the Complexation Behavior of Calix[5]arene Derivative	
	toward Alkyl Ammonium CationsVIII-Y-6 Formation of $HCl^+(A^2\Sigma^+)$ and $HBr^+(A^2\Sigma^+)$ Resulting from $He(2^3S)$	-213
	Penning Ionization of HCl and HBr	-213
	VIII-Y-7 Theoretical Study of Vibrational States for AlNC/AlCN	-213
	VIII-Y-8 Boundary Expansion in Time-Dependent Nonadiabatic Problems	-213
	VIII-Y-9 Optimal Control of Random Matrix Systems with a Parameter	-214
RESE	ARCH ACTIVITIES IX	
Center	r for Integrative Bioscience	
IX-A	Molecular Mechanisms of Oxygen Activation by Heme Enzymes	-215
	IX-A-1 Asymmetric Sulfoxidation and Amine Binding by H64D/V68A and H64D/V68S Mb:	
	Mechanistic Insight into the Chiral Discrimination Step	-215
TX D	IX-A-2 Molecular Mechanism of the Catalase Reaction Studied by Myoglobin Mutants	-215
IX-B	Model Studies of Non-Heme Proteins	
	IX-B-1 Reactivity of Hydrogenperoxide Bound to a Mononuclear Ivon-Herne from SiteIX-B-2 Synthesis, Structure, and Properties of A Novel Mononuclear Iron(III) Complex	.210
	Containing Peroxocarbonate Ligand	-216
	IX-B-3 Structural and Spectroscopic Features of a <i>cis</i> (Hvdroxo)–Fe ^{III} –(Carboxylato)	
	Configuration as an Active Site Model for Lipoxygenases	-217
IX-C	Aqueous Organometallic Chemistry	-217
	IX-C-1 pH-Dependent H ₂ -Activation Cycle Coupled to Reduction of Nitrate Ion	215
	by Cp*Ir Complexes	-217
	with Organoboron Compounds Catalyzed by an Organometallic Aqua Complex	
	$[(SCS)Pd^{II}(H_2O)]^+$ $\{SCS = C_6H_3-2,6-(CH-SBu^t)_2\}$	-217
	IX-C-3 pH-Dependent Transfer Hydrogenation of Ketones with HCOONa as a Hydrogen Donor	
	Promoted by $(\eta^6-C_6Me_6)Ru$ Complexes	-218
IX-D	Single-Molecule Physiology	
	IX-D-1 Myosin V Is a Left-Handed Spiral Motor on the Right-Handed Actin Helix	-219
	IX-D-2 Pause and Rotation of F ₁ -ATPase during Catalysis	-219
IX-F	IX-D-3 F ₁ -ATPase Changes its Conformations upon Phosphate ReleaseBioinorganic Chemistry of Heme-Based Sensor Proteins	·219 -221
IX-L	IX-E-1 Ligand-Switching Intermediates for the CO-Sensing Transcriptional Activator CooA	-221
	Measured by Pulse Radiolysis	-221
	IX-E-2 Conformational Dynamics of the Transcriptional Regulator CooA Protein	
	Studied by Subpicosecond Mid-Infrared Vibrational Spectroscopy	-221
	IX-E-3 Resonance Raman and Ligand Binding Studies of the Oxygen Sensing Signal Transducer Protein HemAT from Bacillus subtilis	221
IX-F	Electronic Structure and Reactivity of Active Sites of Metalloproteins	·221 -223
IA-I	IX-F-1 Trigonal Bipyramidal Ferric Aqua Complex with Sterically Hindered Salen Ligand	.223
	as a Model for Active Site of Protocatechuate 3,4-Dioxygenase	
	IX-F-2 ¹³ C-NMR Signal Detection of Iron Bound Cyanide Ions in Ferric Cyanide Complexes	
	of Heme Proteins	
IX-G	Molecular Mechanism of Heme Degradation and Oxygen Activation by Heme Oxygenase	-224
	IX-G-1 Catalytic Mechanism of Heme Oxygenase through EPR and ENDOR of Cryoreduced Oxy-Heme Oxygenase and Asp 140 Mutants	224
IX.H	Biomolecular Science	-224 -225
178-11	IX-H-1 Stationary and Time-Resolved Resonance Raman Spectra of His77 and Met95 Mutants	
	of the Isolated Heme Domain of a Direct Oxygen Sensor from E. coli	-225
	IX-H-2 Resonance Raman Studies on Xanthine Oxidase:	
	Observation of the Mo ^{VI} -Ligand Vibration	-225
	IX-H-3 Changes in the Abnormal α-Subunit upon CO-Binding to the Normal β-Subunit	22.
	of Hb M Boston: Resonance Raman, EPR, and CD StudyIX-H-4 Coordination Geometry of Cu-Porphyrin in Cu(II)-Fe(II) Hybrid Hemoglobins	-226
	Studied by Q-Band EPR and Resonance Raman Spectroscopies	-226
	IX-H-5 Fine-Tuning of Copper(I)-Dioxygen Reactivity by 2-(2-Pyridyl)ethylamine Bidentate	<i></i>
	LigandsLigands	-226
	IX-H-6 Modulation of the Copper-Dioxygen Reactivity by Stereochemical Effect	
	of Tetradentate Tripodal Ligands	227
	IX-H-7 Reactivity of Hydroperoxide Bound to a Mononuclear Non-Heme Iron Site	
	IX-H-8 A New Mononuclear Iron(III) Complex Containing a Peroxocarbonate Ligand	-221

IX-H-9 Formation, Characterization, and Reactivity of Bis(m-oxo)dinickel(III) Complexes	
Supported by a Series of Bis[2-(2-pyridyl)ethyl]amine Ligands	227
IX-H-10 UV Resonance Raman and NMR Spectroscopic Studies on the pH Dependent Metal	Ion
Release from Pseudoazurin	
IX-I Fast Dynamics of Photoproducts in Solution Phases	228
IX-I-1 Time-Resolved Resonance Raman Study on Ultrafast Structural Relaxation and Vibrational Cooling of Photodissociated Carbonmonoxy Myoglobin	220
IX-I-2 Vibrational Energy Relaxation of Metalloporphyrins in a Condensed Phase Probed by Time-Resolved Resonance Raman Spectroscopy	229
IX-I-3 Mode Dependence of Vibrational Energy Redistribution in Nickel Tetraphenylporphys	<i>22)</i> in
Probed by Picosecond Time-Resolved Resonance Raman Spectroscopy:	111
Slow IVR to Phenyl Peripherals	229
RESEARCH FACILITIES	
Laser Research Center for Molecular Science	
Research Center for Molecular-scale Nanoscience	
Equipment Development Center	
Ultraviolet Synchrotron Orbital Radiation Facility	
Computer Center	232
•	
SPECIAL RESEARCH PROJECTS	233
(a) Chemical Reaction Dynamics Folding Mechanism of Protein Molecules Studied by Generalized-Ensemble Algorithms	222
Nonadiabatic Chemical Dynamics	233
Imaging of Chemical Dynamics	233
Stereodynamics and Active Control of Chemical Reactions by Using Electrostatic Hexapole	255
State-Selector and Polarized Laser Excitation	234
Monte Carlo Simulation of Chemical Gel	
Electronic Structure and Decay Mechanism of Inner-Shell Excited Molecules	234
Computational Study of Quantum Dynamics of a Solute in Solution	235
Photodissociation of 16 Valence Electron Systems, OCS and N ₂ O	235
Development of Single-Molecule Physiology	235
Ultrafast Protein Dynamics Probed by Time-Resolved Resonance Raman Spectroscopy	235
(b) Molecular Photophysics and Science	237
Development of Dynamic Spectroscopy Apparatus Having Nanometer Spatial Resolution	237
(1) Laser Cooling and Trapping of Metastable Helium Atoms	227
(2) Laser Spectroscopic Studies of Atoms and Ions in Liquid Helium	237
Structure, Relaxation and Control of Reactive Cluster Studied by Two-Color Laser Spectroscopy	227
Dynamics of Molecular Superexcited States Studied by Electron and Fluorescence Spectrosco	ny -237
Decay and Dissociation Dynamics of Core Excited Molecules	238
(c) Novel Material Science	239
Calculations of Large Molecular Systems	239
Response of Protein Conformation to Pressure: Theoretical Study on Partial Molar Volume	239
Theory for Equilibrium and Non-Equilibrium Properties of Low-Dimensional Molecular Mate	erials
with Strong Electron Correlation	239
UHV System for MOKE Measurements	240
Pulsed Methods of Electron Spin Resonance Spectyroscopy	
Spectroscopic Studies of Organic Conductors	240
Broad-Line Solid State NMR Investigation of Electronic States in Molecular-Based Conducto	
Development of New Organic Conductors Design and Synthesis of Organic Spin-Ladder Systems	
Construction of BL-7A at UVSOR for STM Observation of SR Irradiation Induced Photocher	
Reaction on Si Surfaces	
Catalytic Oxidation of Alcohols in Water under Atmospheric Oxygen	
by Use of an Amphiphilic Resin-Dispersion of Nano-Palladium Catalyst	242
Reductive Activation of Carbon Dioxide and Oxidative Activation of Water Aimed	
at Energy Conversion	
Coordination Chemistry of New Multidentate Ligands and Activation of Small Molecules	243
Developments and Researches of New Laser Materials	243
Development and Research of Advanced Tunable Solid State Lasers	243
Synthesis of Oligonaphthalenes and Oligoanthracenes and Applications	2.10
for Organic Field-Effect TransistorsField Effect Transistors of BTQBT and Its Derivatives	243
FIELD ETIECT Transistors of BIQBI and its Derivatives	244

Abbreviations

IMS: Institute for Molecular Science GUAS: The Graduate University for Advanced Studies