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Control of quantum wave packets has been recently
studied in various systems such as atoms, molecules,
and semiconductors using chirp-controlled and phase-
locked double pulses.1) In the present study, we ob-
served wave-packet shaping by means of the phase-
programmed femtosecond pulses in a cyanine dye mol-
ecule. The intra-pulse phase pattern of the pulses was
converted to the amplitude of luminescence from the
cyanine molecules.

The phase-programmable femtosecond optical
source is composed of a femtosecond pulse oscillator,
phase modulator and phase analyzer as shown in Figure
1. A femtosecond pulse with a spectral band width as
broad as 160 nm is converted onto the Fourier plane.
After a phase shift is provided to each spectral compo-
nent with a spatial light modulator on the Fourier plane,
the pulse is reconstructed. The output from the phase
modulator is characterized by frequency resolved opti-
cal gating (FROG). The temporal profile and phase
information of the femtosecond pulses can be obtained
from the FROG measurement. A desired phase pattern
can be realized through the iterative adjustment of the
phase mask by analyzing the phase information. The
center wavelength, pulse energy, duration, and phase-
shift division of the source output were 802 nm, 0.64 nJ,
14 fs, and 6π/700 radian, respectively. Figure 2 shows
the spectra and phase dispersions for positively-chirped
(Φ” = 500 fs2), transform-limited (0 fs2) and negatively-
chirped pulses (–500 fs2).

Ethanol solution of a cyanine dye (IR-140) at a
concentration of 4 × 10–4 M is circulated in a 0.5-mm
thick quartz cell. The luminescence spectra of spontane-
ous emission are measured to evaluate the remaining
excited-state population. Figure 3 shows the difference
luminescence spectra of the positively-chirped (PC) and
negatively-chirped (NC) excitations from the transform-
limited excitation. The luminescence intensity is in-
creased and decreased in case of PC and NC excitations,
respectively. This chirp-dependent luminescence can be
explained in terms of intra-pulse pump-dump process.2)

NC pulse induces narrow spatial distribution of the
excited wave packet, while it is easily broadened and
quickly escapes from the Franck-Condon window in PC
case. The overlap integral between the excited- and
ground-state wave packets determines the population,
and as a result, the luminescence intensity.

In conclusion, we observed the remarkable depen-
dence of luminescence intensity and the excited-state
population in IR-140 molecules on the chirped pulse
from the phase-programmable femtosecond optical
source. The observed shaping of quantum wave packet
opens a new possibility to process the intra-pulse phase
information.
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Figure 1. Schematic diagram of the phase-programmable
femtosecond optical source.

Figure 2. Spectra and phase dispersions of positively-chirped
(top), transform-limited (middle) and negatively-chirped
pulses (bottom).
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III-L  Wave Packet Engineering Using a Phase-Programmable
Femtosecond Optical Source

We proposed “wave packet engineering” which realizes mutual conversion between phase information of
photonic and quantum wave packets by means of light-matter interaction. A phase-programmable femtosecond
optical source is indispensable for such interactive control of photonic and quantum wave packets. We demonstrate
control of quantum wave packets in organic molecules and semiconductors using phase-programmed pulses. 



Figure 3. Difference luminescence spectra from IR-140 dye
by the positively and negatively-chirped excitations with
respect to the transform limited pulse.
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