VIII-P Syntheses of Fullerene-Based New Materials with Novel Physical Properties

Fullerene-based new materials are synthesized, and the structures and physical properties are studied in wide temperature and pressure regions. The structures and transport properties of pressure-induced superconducting fulleride, Cs_3C_{60} , are studied by X-ray powder diffraction, ESR, Raman, AC susceptibility and resistivity measurements, in order to clarify the mechanism of pressure-induced superconductivity. The structures and transport properties of metallofullerenes are also studied by X-ray diffraction and resistivity. The field-effect transistors (FET's) with thin-films of fullerenes are fabricated and their transport properties are studied in wide temperature region. STM studies on metallofullerenes adsorbed on Si(111)-(7×7) surface are performed under high vacuum condition.

VIII-P-1 Pressure and Temperature Dependences of the Structural Properties of Dy@C₈₂ Isomer I

TAKABAYASHI, Yasuhiro¹; KUBOZONO, Yoshihiro; KANBARA, Takayoshi¹; FUJIKI, Satoshi; SHIBATA, Kana²; HARUYAMA, Yusuke²; HOSOKAWA, Tomoko²; RIKIISHI, Yoshie²; KASHINO, Setuo²

(¹IMS and Okayama Univ.; ²Okayama Univ.)

[*Phys. Rev. B* **65**, 73405 (2002)]

Crystals of Dy@C₈₂ isomer I are studied by x-ray powder diffraction with synchrotron radiation in wide temperature and pressure regions. The isomer I of Dy@C₈₂ shows a simple cubic structure with lattice constant, *a*, of 15.85(3) Å at 298 K, while the isomer II shows a face-centered cubic structure with *a* of 15.75(4) Å. The structural phase transition of the second-order is indicated for the isomer I at 300–310 K by the temperature dependence of x-ray diffraction and differential scanning calorimetry. Further, the pressure dependence of the lattice constant is studied for the isomer I up to 60 kbar, which can be fitted by a Murnaghan equation of state.

VIII-P-2 Ferromagnetism and Giant Magnetoresistance in the Rare-Earth Fullerides $Eu_{6-x}Sr_xC_{60}$

ISHII, Kenji^{1,2}; FUJIWARA, Akihiko¹; SUEMATSU, Hiroyoshi¹; KUBOZONO, Yoshihiro (¹Univ. Tokyo; ²JAERI)

[Phys. Rev. B 65, 134431 (2002)]

We have studied crystal structure, magnetism, and electric transport properties of a europium fulleride Eu_6C_{60} and its Sr-substituted compounds, $Eu_{6-x}Sr_xC_{60}$. They have a *bcc* structure, which is an isostructure of other M_6C_{60} (*M* represents an alkali atom or an alkalineearth atom). Magnetic measurements revealed that magnetic moment is ascribed to the divalent europium atom with S = 7/2 spin, and a ferromagnetic transition was observed at $T_c = 10-14$ K. In Eu_6C_{60} , we also confirm the ferromagnetic transition by heat-capacity measurement. The striking feature in $Eu_{6-x}Sr_xC_{60}$ is very large negative magnetoresistance at low temperature; the resitivity ratio $\rho(H = 9 \text{ T})/\rho(H = 0 \text{ T})$ reaches almost 10^{-3} at 1 K in Eu₆C₆₀. Such large magnetoresitance is the manifestation of a strong π -*f* interaction between conduction carriers on C₆₀ and 4*f* electrons of Eu.

VIII-P-3 Bridging Fullerenes with Metals

CHI, Dam Hieu¹; IWASA, Yoshihiro^{1,2,3}; CHEN, X. H.⁴; TAKENOBU, Taishi²; ITO, Takayoshi¹; MITANI, Tadaoki¹; NISHIBORI, Eiji⁵; TAKATA, Masaki⁵; SAKATA, Makoto⁵; KUBOZONO, Yoshihiro

(¹JAIST; ²Tohoku Univ.; ³CREST; ⁴Univ. Sci. Tech. China; ⁵Nagoya Univ.)

[Chem. Phys. Lett. 359, 177 (2002)]

The bonding nature between rare earth metals and fullerene molecules has been investigated. The electron density distribution for nominal Sm_3C_{70} , calculated by a maximum entropy method (MEM) based on the Rietveld analysis of synchrotron X-ray diffraction pattern, unambiguously demonstrated a covalent $Sm\cdots C$ bond, which is almost as strong as the interatomic bonding of crystal Si. Furthermore, the Sm bridges two C_{70} molecules, producing a $C_{70}\cdots Sm\cdots C_{70}$ dimer structure.

VIII-P-4 Structure and Physical Properties of $Cs_{3+\alpha}C_{60}$ (α = 0.0–1.0) under Ambient and High Pressures

FUJIKI, Satoshi; KUBOZONO, Yoshihiro; KOBAYASHI, Mototada²; KAMBE, Takashi¹; RIKIISHI, Yoshie¹; KASHINO, Setuo¹; ISHII, Kenji³; SUEMATSU, Hiroyoshi³; FUJIWARA, Akihiko⁴

(¹Okayama Univ.; ²Himeji Inst. Tech.; ³Univ. Tokyo; ⁴JAIST)

[Phys. Rev. B 65, 235425 (2002)]

The intermediate phases, $Cs_{3+\alpha}C_{60}$ ($\alpha = 0.0-1.0$), have been prepared, and their structure and physical properties are studied by x-ray powder diffraction, Raman, ESR, electric conductivity and ac susceptibility measurements under ambient and high pressures. The xray powder diffraction pattern of $Cs_{3+\alpha}C_{60}$ ($\alpha = 0.0-$ 1.0) can be indexed as a mixture of the body-centeredorthorhombic (*bco*) and cubic (A15) phases. The A15 phase diminishes above 30 kbar. The broad ESR peak due to conduction electron (*c*-ESR) is observed only for the phases around $\alpha = 0.0$ in $C_{S_{3+\alpha}}C_{60}$. The resistivity of the $C_{S_{3+\alpha}}C_{60}$ ($\alpha \neq 0$) sample follows the granular metal theory and/or Sheng model even in the sample exhibiting a broad ESR peak. No superconducting transition is observed up to 10.6 kbar in $C_{S_{3+\alpha}}C_{60}$ ($\alpha \neq$ 0). These results present that bco phase of $C_{S_{3+\alpha}}C_{60}$ ($\alpha =$ 0) is a final candidate for a pressure-induced superconductor.

VIII-P-5 Complex-Plane Impedance Study on a Hydrogen-Doped Copper Coordination Polymer: *N*,*N*'-bis-(2-hydroxy-ethyl)-Dithiooxamidato-Copper(II)

NAGAO, Yuki¹; IKEDA, Ryuichi¹; KANDA, Seiichi²; KUBOZONO, Yoshihiro; KITAGAWA, Hiroshi^{1,3,4}

(¹Univ. Tsukuba; ²Univ. Tokushima; ³JAIST; ⁴JST)

[Mol. Cryst. Liq. Cryst. 379, 89 (2002)]

AC conductivity measurements with an impedance analyzer were carried out for a hydrogen-doped coordination polymer, *N*,*N*'-bis-(2-hydroxy-ethyl)-dithiooxamidato-copper(II), in order to estimate the protonic conductivity (σ_p). The log σ_p was linearly increased from 2.6 × 10⁻⁹ to 2.2 × 10⁻⁶ Scm⁻¹ with relative humidity (RH) from 45 to 100% at 300 K. A slight hysteresis of protonic conductivity was observed upon increasing and decreasing RH, which implies that H₃O⁺ is generated by a reaction between water molecule and acid-base polymer near RH ~ 100%.

VIII-P-6 Crystal Structure and Electronic Transport of Dy@C₈₂

KUBOZONO, Yoshihiro; TAKABAYASHI, Yasuhiro¹; SHIBATA, Kana²; KANBARA, Takayoshi¹; FUJIKI, Satoshi; KASHINO, Setuo²; FUJIWARA, Akihiko³; EMURA, Shuichi⁴ (¹IMS and Okayama Univ.; ²Okayama Univ.; ³JAIST;

⁴Osaka Univ.)

[Phys. Rev. B submitted]

Crystal structure of Dy@C₈₂ isomer I at 298 K has been determined by Rietveld refinement for X-ray powder diffraction with synchrotron radiation. The isomer I shows a simple cubic structure (sc: $Pa\overline{3}$) with a lattice constant, *a*, of 15.78(1) Å. The C₂ axis of a C_{2v}-C₈₂ cage aligns along a [111] direction of this crystal lattice. The C₈₂ cage is orientationally disordered to satisfy a $\overline{3}$ symmetry along [111] which is requested in this space group. The large thermal parameter for the Dy atom estimated from the X-ray diffraction probably reflects a large disorder caused by a floating motion of the Dy atom inside the C₈₂ cage as well as a ratchet-type motion of the Dy@C₈₂ molecule. The electronic transport of thin film of Dy@C₈₂ shows a semiconducting behavior. The energy gap, E_g , is estimated to be 0.2 eV. Further, the variation of valence from Dy^{3+} to Dy^{2+} is found by metal-doping into the $Dy@C_{82}$ crystals.

VIII-P-7 *N*-Channel Field-Transistors with Thin Films of Fullerenes

KANBARA, Takayoshi²; FUJIKI, Satoshi²; SHIBATA, Kana¹; KUBOZONO, Yoshihiro¹; URISU, Tsuneo; SAKAI, Masahiro; FUJIWARA, Akihiko³

(¹Okayama Univ.; ²IMS and Okayama Univ.; ³JAIST)

[*Phys. Rev. B* submitted]

N-cannel field effect transistors (FETs) are fabricated with thin films of C_{60} , C_{70} and $Dy@C_{82}$, and an SiO₂ insulating layer. The transport properties of the C_{60} and C_{70} FET's are studied in a temperature region from 200 to 330 K. The typical FET properties are observed in C_{60} and C_{70} above 220 K. The hopping transport with activation energy of 0.3 eV is observed for the C_{60} and C_{70} FET's in this temperature region. Further, the condition of fabrication is studied in order to improve the FET property. The $Dy@C_{82}$ FET is first fabricated and its property is studied at 295 K.

VIII-P-8 STM Study of Dy@C₈₂ on Si(111)-(7×7) Surface

FUJIKI, Satoshi; KUBOZONO, Yoshihiro; KANBARA, Takayoshi¹; FUJIWARA, Akihiko²; HOSOKAWA, Tomoko¹; URISU, Tsuneo (¹Okayama Univ.; ²JAIST)

[to be submitted]

Single-molecule image of $Dy@C_{82}$ on $Si(111)-(7\times7)$ surface is observed by STM. The $Dy@C_{82}$ molecules were deposited on the $Si(111)-(7\times7)$ surface under UHV chamber. The first layer of $Dy@C_{82}$ is disordered, and no second layer islands are found before the complete formation of the first layer of $Dy@C_{82}$. A singlemolecule image of $Dy@C_{82}$ was clearly observed on the first layer. This image shows that the maximum height of the molecule is ~ 11.3 Å which corresponds to those of two long axes of $Dy@C_{82}$ inclusive of van der Waals radius of C atom. The STS of the multilayer of $Dy@C_{82}$ suggests a energy gap of 0.1 eV at 295 K, in consistent with that, 0.2 eV, determined by resistivity measurement for the $Dy@C_{82}$ thin film. This shows that the $Dy@C_{82}$ molecule is a small-gap semiconductor.