VII-K Synthesis of Transition Metal Complexes Containing a Novel Metal-Silicon and Metal-Gallium Bonding

Synthesis of transition metal complexes with unprecedented bonds between a metal and a heavy main group element is one of current topics on inorganic chemistry. In this project, we have investigated the synthesis, structure, and reactivities of metal complexes containing a metal-silicon unsaturated bonding and a metal-hydrogen-gallium $3c^2e$ bonding. We also developed a versatile preparative method of anionic metal complexes $CpM(CO)_2^-$ (M = Fe, Ru).

VII-K-1 Synthesis of Self-Stabilized and Donor-Free Silyl(silylene)tungsten Complexes

UENO, Keiji¹; WATANABE, Nobuhiko²; ASAMI, Satsuki²; SAKAI, Mihoko²; OGINO, Hiroshi³ (¹IMS and Gunma Univ.; ²Tohoku Univ.; ³Univ. Air)

[Organometallics 21, 1326–1328 (2002)]

Photolysis of Cp'W(CO)₃Me (**1a**: Cp' = η -C₅Me₅; **1b**: Cp' = η -C₅Me₄Et) in the presence of excess HSi-Me₂SiMe₃ afforded a self-stabilized silyl(silylene)tungsten complex with a dimeric structure, [Cp'W-(CO)₂(=SiMe₂)(SiMe₃)]₂ (**2a**: Cp' = η -C₅Me₅; **2b**: Cp' = η -C₅Me₄Et), respectively. In contrast, photolysis of **1a** in the presence of HSiMe₂SiMeMes₂ (Mes = 2,4,6-Me₃C₆H₂) resulted in the formation of the first donorfree silyl(silylene) complex with only alkyl and aryl substituents on the silicon atoms Cp'W(CO)₂(=SiMes₂)-(SiMe₃) (**3**).

VII-K-2 Synthesis of the First Gallane-Coordinated Transition Metal Complex

UENO, Keiji¹; YAMAGUCHI, Takeshi²; UCHIYAMA, Kei²; OGINO, Hiroshi³ (¹IMS and Gunma Univ.; ²Tohoku Univ.; ³Univ. Air)

[Organometallics 21, 2347–2349 (2002)]

The first gallane-coordinated metal complex $(OC)_5W(\eta^{1}\text{-}GaH_3\text{-}quinuclidine)$ (2) was synthesized by photolysis of a *ca.* 1:1 mixture of $W(CO)_6$ and quinuclidine-coordinated gallane H_3Ga -quinuclidine (1) in toluene and by the reaction of $(OC)_5W(THF)$ with 1 eq of gallane 1 in THF. X-ray crystal structure analysis of 2 revealed that gallane 1 is bound to the tungsten fragment *via* a W–H–Ga 3-center 2-electron bond.

VII-K-3 Convenient Preparation of Li[(η^5 -C₅Me₅)M(CO)₂] (M = Ru, Fe) by the Reaction of (η^5 -C₅Me₅)M(CO)₂H with *n*-BuLi

OKAZAKI, Masaaki¹; SATOH, Kazuyuki¹; AKAGI, Tadahiro¹; IWATA, Masatoshi¹; JUNG, Kyeong A.¹; SHIOZAWA, Rie¹; UENO, Keiji²; TOBITA, Hiromi¹; OGINO, Hiroshi³ (¹Tohoku Univ.; ²IMS and Gunma Univ.; ³Univ. Air)

[J. Organomet. Chem. 645, 201–205 (2002)]

The anionic ruthenium and iron complexes Li[(η^5 -C₅Me₅)M(CO)₂] (M = Ru (**1-Ru**), Fe (**1-Fe**)) were generated by deprotonation of the transition metal hydride (η^5 -C₅Me₅)M(CO)₂H with *n*-BuLi in tetrahydrofuran (THF). The reaction proceeded at -45 °C immediately. Reactions of **1** with various electrophiles (Me₃SiCl, *p*Tol₂HSiCl, Me₂SiCl₂, MeSiCl₃, SiCl₄, Me₃SiSiMe₂Cl, and Ph₂GeCl₂) afforded the corresponding nucleophilic substitution products (η^5 -C₅Me₅)M-(CO)₂ER₃ (E = Si, Ge) *via* salt-elimination.