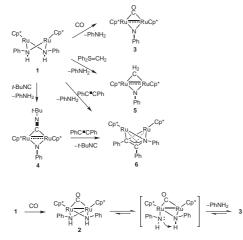
VIII-I Preparation and Properties of the Homo- and Heterometallic Clusters

This project focuses on the development of a systematic synthetic route to a series of the homo- and heterometallic clusters as templates or catalysts for new types of activation and transformation of organic, inorganic, and organometallic molecules at the well-defined multimetallic reaction sites. Especially, preparation and reactivity of dinuclear Ru(II) complexes having the bridging amido ligands has been extensively studied.


VIII-I-1 Reactivity of Amido Ligands on a Dinuclear Ru(II) Center: Formation of Imido **Complexes and C-N Coupling Reaction with** Alkyne

TAKEMOTO, Shin¹; KOBAYASHI, Tomoharu¹; MATSUZAKA, Hiroyuki²

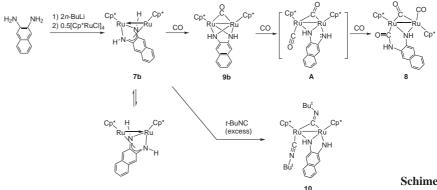
(¹Osaka Prefecture Univ.; ²IMS and Osaka Prefecture Univ.)

[J. Am. Chem. Soc. 126, 10802–10803 (2004)]

Reactions of the dimeric Ru(II) anilido complex $[Cp*Ru(\mu_2-NHPh)]_2$ (1; $Cp* = \eta^5-C_5Me_5$) with CO, tbutyl isocyanide, a sulfur ylide Ph₂S=CH₂, and diphenylacetylene proceeded with an unexpected disproportionation of the u₂-anilido ligands to form free aniline and a series of new imidodiruthenium complexes **3–5** (Scheme 1). In the case of diphenylacetylene, the imido fragment underwent subsequent coupling reaction with the alkyne to produce an iminoalkenyl complex 6.

Existence of a Ru-Ru multiple bond is suggested by

electron counting and the short Ru-Ru distance that is close to those of some other compounds with Ru=Ru double bonds (2.417-2.629 Å). Orbital analysis of a DFT-B3PW91 optimized model compound [(CpRu)₂ $(\mu_2$ -CO) $(\mu_2$ -NH)] (3') has provided inshights into the Ru–Ru bond in 3. Although the first six of HOMOs of 3' are predominantly metal-based orbitals and constitute a formally nonbonded $\sigma^2 \sigma^{*2} \delta^4 \delta^{*4}$ configuration, the multiple bond order between the Ru atoms can be rationalized by back-donation from the filled Ru–Ru σ^* orbital into a π^* orbital of the CO ligand, and by donation from the imido and CO ligands into empty Ru-Ru π -bonding orbitals.


VIII-I-2 A Dinuclear Ru(II) Chelateing Amido Complex: Synthesis, Characterization, and **Coupling Reaction with Carbon Monoxide**

TAKEMOTO, Shin¹; OSHIO, Shinya¹; KOBAYASHI, Tomoharu¹; MATSUZAKA, Hiroyuki²; HOSHI, Masatsugu³; YAMASHITA, Masayo³; MIYASAKA, Hitoshi³; ISHII, Tomohiko³; YAMASHITA, Masahiro³

(¹Osaka Prefecture Univ.; ²IMS and Osaka Prefecture Univ.; ³Tokyo Metropolitan Univ.)

[Organometallics 23, 3587–3589 (2004)]

Results are summarized in Scheme 1. [Cp*RuCl]₄ $(Cp^* = \eta^5 - C_5 Me_5)$ reacts with 2 equiv of dilithium 2,3naphthalenediamide to afford a dinuclear bridging amido complex 7b in moderate yield. Treatment of 7b with CO (1 atm) resulted in the incorporation of three molecules of CO into the diruthenium core to give a carbamoyl amido bis(carbonyl) complex 8. Similar treatment of 7b with *tert*-butyl isocyanide resulted in the quantitative formation of a bis(isocyanide) complex 10, in which the two amido nitrogen atoms also occupy the terminal and bridging coordination sites.

Schime 1.