VIII-C Preparation and Properties of the Homo- and Heterometallic Clusters

This project focuses on the development of a systematic synthetic route to a series of the homo- and heterometallic clusters as templates or catalysts for new types of activation and transformation of organic, inorganic, and organometallic molecules at the well-defined multimetallic reaction sites. Especially, preparation and reactivity of dinuclear Ru(II) complexes having the bridging amido, imido, and alkoxido ligands has been extensively studied.

Scheme 2.

VIII-C-1 A Dinuclear Ru(II) κ^2 -Diamido/ η^6 -Naphthalene Complex Featuring a Coordinatively Unsaturated Yet Highly p-Basic (η^5 -C₅Me₅)Ru Diamide Fragment

TAKEMOTO, Shin¹; OSHIO, Shinya¹; SHIROMOTO, Takayuki¹; MATSUZAKA, Hiroyuki²

(1 Osaka Pref. Univ.; 2 IMS and Osaka Pref. Univ.)

[Organometallics 24, 801–804 (2005)]

Acetonitrile induced a clean isomerization of the amido-bridged diruthenium complex $[(Cp^*Ru)_2\{\mu_2-\kappa^2:\eta^4-2,3\text{-naphthalenediamido}\}]$ (1) into a $\kappa^2:\eta^6\text{-bonded}$ dinuclear complex $[Cp^*Ru\{\mu^2-\kappa^2:\eta^6-2,3\text{-naphthalene-diamido}\}RuCp^*]$ (2a) featuring a coordinatively unsaturated Cp^*Ru terminal diamide fragment. Isomerization of 1 also took place on heating a solution of 1 in hexanes, toluene, or toluene-acetone at 50 °C to give another isomer 2b selectively, in which the $\{Cp^*Ru\}^+$ fragment is bound to the inner ring of the naphthalene moiety.

Structural and spectroscopic data of its carbon monoxide or *tert*-butyl isocyanide adducts indicated that the Cp*Ru diamide fragment can serve as a strong π -base.

VIII-C-2 Dinuclear Ruthenium(II) Catecholato and 2,3-Naphthalenediolato Complexes Featuring κ^2 -Diaryloxo/ η^6 -Arene Coordination Mode

TAKEMOTO, Shin¹; OGURA, Shin-ichiro¹; KAMIKAWA, Ken¹; MATSUZAKA, Hiroyuki² (¹Osaka Pref. Univ.; ²IMS and Osaka Pref. Univ.)

[Inorg. Chim. Acta in press]

A new dinuclear ruthenium(II) catecholato complex $[Cp*Ru(\kappa^2:\eta^6-\mu_2-1,2-O_2C_6H_4)RuCp*]$ (5; $Cp*=\eta^5-C_5$ Me₅) has been prepared by the reaction of [Cp*RuCl]₄ with 2 equiv of disodium catecholate in THF. Complex 5 has a dinuclear structure, in which one of the Cp*Ru fragments is κ^2 -bonded to the two oxygen atoms and the other is η^6 -bonded to the aromatic ring. Similar treatment of [Cp*RuCl]₄ with disodium 2,3-naphthalenediolate affords an analogous κ^2 : η^6 -bonded dinuclear complex $[Cp*Ru(\kappa^2:\eta^6-\mu_2-2,3-O_2C_{10}H_6)RuCp*]$ (6) with selective π -complexation at the oxygen-substituted naphthalene ring. The molecular structure of 6 has been determined by X-ray crystallography. The oxygenbound ruthenium atoms in complexes 5 and 6 are coordinatively unsaturated and readily uptake 1 equiv of carbon monoxide to give the corresponding carbonyl adducts $[Cp*Ru(CO)(\kappa^2:\eta^6-\mu_2-1,2-O_2C_6H_4)RuCp*]$ (7)

and [Cp*Ru(CO)(κ^2 : η^6 - μ_2 -2,3-O $_2$ C $_{10}$ H $_6$)RuCp*] (8), respectively.

Scheme 1. Preparation of Complexes. (i) $Na_2[1,2-O_2C_6H_4]$, (ii) $Na_2[2,3-O_2C_{10}H_6]$, (iii) CO (1 atm).