VIII-F Syntheses, Structures, and Reactivities of Multinuclear Transition Metal Complexes with *O*- and *N*-Donor Ligands

Organotransition metal complexes with *O*- and *N*-donor ligands have recently been attracting considerable attention, because they often show structures, reactivities, and physicochemical properties significantly different from those of the complexes with *P*- and *S*-donor ligands. In this project it has been disclosed that *O*- and *N*-donor ligands such as cyanamide (NCN²⁻) and cyclophosphate ($P_3O_9^{3-}$, $P_4O_{12}^{4-}$) ions act as effective bridges to form multinuclear complexes with characteristic structures. The newly synthesized diiridium complex [Cp*Ir(μ -NCN-*N*,*N*)]₂ provides a versatile building block for the synthesis of a series of tri- and tetranuclear cyanamido clusters. On the other hand, di- and trinuclear Ti(IV) complexes built up with Cp*Ti units and cyclophosphato ligand(s) possess novel three-dimensional structures and exhibit unique fluxional behavior in solution.

VIII-F-1 A Cyanamido-Bridged Diiridium Complex: A Reactive Building Block for Polynuclear Cyanamido Complexes

KAJITANI, Hidenobu¹; TANABE, Yoshiaki²; KUWATA, Shigeki³; ISHII, Youichi⁴

(¹Univ. Tokyo; ²Chuo Univ.; ³Tokyo Inst. Tech.; ⁴IMS and Chuo Univ.)

[Organometallics 24, 2251–2254 (2005)]

Treatment of diiridium complex [Cp*IrCl₂]₂ (Cp* = η^5 -C₅Me₅) with 2 equiv of Na₂NCN has been found to afford the NCN–bridged diiridium complex [Cp*Ir(μ_2 -NCN-N,N)]₂ (1), which undergoes further reactions with donor molecules such as CO and phosphines. Complex 1 works as an excellent building block for the synthesis of NCN-capped multinuclear complexes: its reactions with cationic group 8–10 metal complexes such as [Cp-Ru(MeCN)₃]⁺ (Cp = η^5 -C₅H₅), [Rh(cod)(acetone)_n]⁺ (cod = 1,5-cyclooctadiene), and [Pd(η^3 -C₃H₅)(acetone)_n]⁺ give the heterotrinuclear complexes [(Cp*Ir)₂(ML)(μ_3 -NCN)₂]⁺ (ML = CpRu, Rh(cod), Pd(η^3 -C₃H₅)), while the dimerization of 1 leads to the cubane-type tetra-iridium complex [Cp*Ir(μ_3 -NCN)]₄ (Scheme 1).

VIII-F-2 Synthesis, Structures, and Solution Behavior of Di- and Trinuclear Titanium(IV)-Cyclophosphato Complexes

KAMIMURA, Sou¹; MATSUNAGA, Tsukasa¹; KUWATA, Shigeki²; IWASAKI, Masakazu³; ISHII, Youichi⁴

(¹Univ. Tokyo; ²Tokyo Inst. Tech.; ³Saitama Inst. Tech.; ⁴IMS and Chuo Univ.)

[Inorg. Chem. 43, 6127-6129 (2004)]

The reaction of the cyclotetraphosphate ion $(P_4-O_{12}^{4-})$ with $[Cp*TiCl_3]$ gives $[(Cp*Ti)_2(P_4O_{12})_2]^{2-}$ where the P_4O_{12} ligands adopt a saddle conformation, while that with $[(Cp*TiCl)_3(\mu-O)_3]$ leads to $[(Cp*Ti)_3-(\mu-O)_3(P_4O_{12})]^-$ containing a crown form P_4O_{12} ligand; both products feature their unique cage structures. The latter complex is fluxional in solution, and the variable temperature ¹H NMR study has revealed that the Ti₃O₃ unit is rotating on the P_4O_{12} platform. On the other hand, the reactions of the cyclotriphosphate ion $(P_3O_9^{3-})$ with $[(Cp*TiCl_2)_2(\mu-O)]$ and $[(Cp*TiCl_3(\mu-O)_3]$ afford $[(Cp*Ti)_2(\mu-O)(P_3O_9)_2]^{2-}$ and $[(Cp*Ti)_3(\mu-O)_3C1(P_3O_9)]^-$, respectively, and in both cases the P_3O_9 ligands bridge the two titanium centers with an $\eta^2:\eta^1$ coordination mode (Scheme 1).

