IV-D Progress of Conjugated Phenomena Coupled with Spin, Charge and Photon for Assembled Hetero-Molecular System

Intercalation of photochromic molecule into magnetic system provides fascinating multi-functionalities such as photo-magnetism, which gains much attention for their application to devices. The main subjects in this project are the development of photo-induced spin-crossover phenomena at room temperature by using the photo-isomerization of intercalated molecule, and the development of the transformation of magnetism for two-dimensional ferro-magnetic system coupled with photochromic molecule.

IV-D-1 Enhancement of the Curie Temperature by Photoisomerization of Diaryl-Ethene (DAE) for an Organic–Inorganic Hybrid System: Co₄(OH)₇(DAE)_{0.5}-3H₂O

SHIMIZU, Hideharu¹; NAKAMOTO, Akio¹; ENOMOTO, Masaya¹; KOJIMA, Norimichi² (¹Univ. Tokyo; ²IMS and Univ. Tokyo)

[Inorg. Chem. 45, 10240–10247 (2006)]

Photomagnetism is one of the most attractive topics in recent research on molecular solids. Intercalation of an organic photochromic molecule into layered magnetic systems has a possibility to provide multifunctional properties such as photomagnetism. In order to build up a photosensitive multifunctional magnet, an organicinorganic hybrid system coupled with a photochromic diarylethene anion, 2,2'-dimethyl-3,3'-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]thiophene-6-sulfonate) (DAE), and cobalt LDHs (layered double hydroxides), Co₄(OH)₇(DAE)_{0.5}·3H₂O, was synthesized by the anion exchange reaction between Co₂(OH)₃(CH₃COO)·H₂O and DAE.^{1,2)} In the dark and under UV (313 nm) irradiated conditions, Co₄(OH)₇(DAE)_{0.5}·3H₂O with the open and close-forms of DAE were obtained, respectively. The magnetic susceptibility measurements elucidated ferromagnetic intra- and inter-layer interactions and Curie temperatures of $T_{\rm C} = 9$ K and $T_{\rm C} = 20$ K for cobalt LDHs with the open and close-forms of DAE, respectively. The enhancement of the Curie temperature from 9 K to 20 K by substituting the open-form of DAE with the close-form of DAE as intercalated molecule is attributed to the delocalization of π electrons in the closeform of DAE, which enhances the inter-layer magnetic interaction. The enhancement of the inter-layer magnetic interaction induced by the delocalization of π electrons in intercalated molecules is strongly supported by the fact that the Curie temperature (26.0 K) of cobalt LDHs with (E,E)-2,4-hexadienedioate having a conjugated π electron system is enormously higher than that (7.0 K) of cobalt LDHs with hexanedioate, which is shown in Figure 1.²⁾ By UV irradiation of 313 nm, Co₄(OH)₇ $(DAE)_{0.5}$ ·3H₂O shows the photoisomerization of DAE from the open-form to the close-one in solid state, which leads to the enhancement of Curie temperature, which is schematically shown in Figure $2.^{2)}$

References

- 1)M. Okubo, M. Enomoto and N. Kojima, *Solid State Commun.* 134, 777 (2005).
- 2) H. Shimizu, M. Okubo, A. Nakamoto, M. Enomoto and N. Kojima, *Inorg. Chem.* 45, 10240 (2006).

Figure 1. Relation between the interlayer distance and the Curie temperature of Co-LDHs.

Figure 2. Schematic representation of the photoinduced conversion between Co-LDHs with open-form of DAE having $T_{\rm C} = 9$ K and Co-LDHs with closed-form of DAE having $T_{\rm C} = 20$ K.

IV-D-2 Charge Transfer Phase Transition and Ferromagnetism in Organic- Inorganic Hybrid System, A[Fe^{II}Fe^{III}(dto)₃](A = $(C_nH_{2n+1})_4N$, Spiropyran, *etc.*; dto = $C_2O_2S_2$)

KOJIMA, Norimichi¹; HIKITA, Masanori²; KIDA, Noriyuki²; KASHIMA, Izuru²; ONO, Yuuki²; ITOI, Miho²; ENOMOTO, Masaya² (¹IMS and Univ. Tokyo; ²Univ. Tokyo)

[Synth. Met. 153, 473–476 (2005), Eur. J. Inorg. Chem. 1198–1207 (2006)]

In the case of mixed-valence complexes whose spin states are situated in the spin-crossover region, it is expected that new types of conjugated phenomena coupled with spin and charge take place. Recently, we have discovered a new type of first order phase transition around 120 K for $(n-C_3H_7)_4N[Fe^{II}Fe^{III}(dto)_3](dto =$ $C_2O_2S_2$), where the thermally induced charge transfer between Fe^{II} and Fe^{III} occurs reversibly.¹⁾ (n-C₄H₉)₄N [Fe^{II}Fe^{III}(dto)₃] also undergoes the charge transfer phase transition around 140 K, while the charge transfer phase transition does not take place for $(n-C_nH_{2n+1})_4N[Fe^{II}]$ $Fe^{III}(dto)_3](n = 5 and 6)$, where the spin configuration of Fe^{II} (S = 2) and Fe^{III} (S = 1/2) exists between 2 K and 300 K. Moreover, $(n-C_nH_{2n+1})_4N[Fe^{II}Fe^{III}(dto)_3]$ (n = 3-6) undergo the ferromagnetic phase transition. The Curie temperatures for n = 3 and 4 are 6.5 K and 6 K & 13 K, respectively, while those for n = 5 and 6 are 19 K and 25 K, respectively.²⁾

As mentioned above, these phase transitions remarkably depend on the size of intercalated cation, which implies a possibility to control the magnetic properties of two-dimensional honeycomb network structure of $[Fe^{II}Fe^{III}(dto)_3]_{\infty}$ by means of the isomerization of intercalated cation. From this viewpoint, we have synthesized a photo-sensitive organic-inorganic hybrid system, (SP)[Fe^{II}Fe^{III}(dto)₃](SP = spiropyran), and investigated the photo-induced effect on the magnetic properties through the medium of photo-isomerization of spiropyran.³⁾ When the UV light is irradiated for (SP) [Fe^{II}Fe^{III}(dto)₃] in KBr pellet between 300 K and 77 K, a new absorption spectrum with wide half-width appears around 550 nm, which corresponds to the π - π * transition in the open form of SP⁺, which implies that the photoisomerization of SP⁺ takes place even at 77 K in the solid state of $(SP)[Fe^{II}Fe^{III}(dto)_3]$. The zero-field cooled magnetization (ZFCM) has two peaks at 5 K and 15 K, which implies the coexistence of two ferromagnetic phases. The peak of ZFCM at 5 K disappears after UV irradiation. These UV irradiation effects on the magnetic properties imply that the photo-isomerization of SP from the closed form to the open one stabilizes the hightemperature phase with $Fe^{III}(S = 1/2) - Fe^{II}(S = 2)$ and destabilizes the low-temperature phase with $Fe^{III}(S =$ 5/2)-Fe^{II}(S = 0). Consequently, it is concluded that the charge transfer transition between Fe^{II} and Fe^{III} in [Fe^{II}Fe^{III}(dto)₃] is induced by the photo-isomerization of SP in (SP)[Fe^{II}Fe^{III}(dto)₃].

References

- N. Kojima, W. Aoki, M. Itoi, Y. Ono, M. Seto, Y. Kobayashi and Yu. Maeda, *Solid State Commun.* **120**, 165 (2001).
- 2) M. Itoi, Y. Ono, N. Kojima, K. Kato, K. Osaka and M. Takata, *Eur. J. Inorg. Chem.* 1198 (2006).
- 3)I. Kashima, M. Okubo, Y. Ono, M. Itoi, N. Kida, M. Hikita, M. Enomoto and N. Kojima, *Synth. Met.* **153**, 473 (2005).