VIII-D Syntheses, Structures, and Reactivities of Multinuclear Transition Metal Complexes with O- and N-Donor Ligands

Organotransition metal complexes with O- and N-donor ligands have recently been attracting considerable attention, because they often show structures, reactivities, and physicochemical properties significantly different from those of the complexes with P- and S-donor ligands. In this project it has been revealed that cyanamide (NCN^{2-}) anion effectively bridge organometallic fragments to form multinuclear complexes with characteristic structures. It has recently been found that tetranuclear C_3 -elongated cubane-like complexes of cobalt and rhodium can be synthesized from the reaction of $[Cp^*MX_2]_2$ (M = Co, Rh; X = Cl, I) with Na₂NCN. We have also investigated into the reactivities of coordinated NO in early and late heterobimetallic (ELHB) complexes and shown that the terminally bound NO ligand at a Rh-W bimetallic core undergoes unprecedented O-methylation.

VIII-D-1 Syntheses and Properties of NCN-Bridged Tri- and Tetranuclear Complexes of Cobalt and Rhodium

TAKAHATA, Keiichi¹; IWADATE, Noriyuki¹; KAJITANI, Hidenobu²; TANABE, Yoshiaki¹; ISHII, Youichi³

(¹Chuo Univ.; ²Univ. Tokyo; ³IMS and Chuo Univ.)

[J. Organomet. Chem. in press]

The reaction of [Cp*CoI₂]₂ with 2 equiv of Na NCNH affords the 16-membered macrocyclic NCNHbridged tetracobalt(III) complex [Cp*CoI(µ₂-NCNH-(N,N')]₄ (1a), while that with 2 equiv of Na₂NCN yields the C3-elongated cubane-like NCN-bridged tetracobalt(III) complex [Cp*Co(µ₃-NCN-N,N,N')₃(CoCp*)₃ $(\mu_3$ -NCN-N,N,N)] (2a). Treatment of [Cp*RhCl₂]₂ with 2 equiv of NaNCNH gives the C_3 -elongated cubane-like tetrarhodium(III) complex $[Cp*Rh(\mu_3-NCN-N,N,N')_3]$ $(RhCp^*)_3(\mu_3-NCN-N,N,N)$] (2b) via the macrocyclic complex $[Cp*RhCl(\mu_2-NCNH-N,N')]_4$ (1b) (Figure 1). On the other hand, the reaction of [Cp*Co Cl]₂ with Na₂NCN affords the anionic bis(NCN)-capped tricobalt(II) complex Na[(Cp*Co)₃(µ₃-NCN-*N*,*N*,*N*)₂]. The molecular structures of complexes 1a CH₂Cl₂ and $2b \cdot 2C_6H_6$ have been confirmed by X-ray analyses. The electrochemical properties of these types of NCNbridged group 9 metal complexes have also been examined.

Figure 1. Structures of NCN-bridged Co and Rh tetranuclear complexes.

VIII-D-2 Electrophilic O-Methylation of a Terminal Nitrosyl Ligand Attained by Early–Late Heterobimetallic Effect

ARASHIBA, Kazuya¹; MATSUKAWA, Shoji²;

KUWATA, Shigeki³; TANABE, Yoshiaki¹; IWASAKI, Masakazu⁴; ISHII, Youichi⁵

(¹Chuo Univ.; ²Univ. Tokyo; ³Tokyo Tech; ⁴Saitama Inst. Tech.; ⁵IMS and Chuo Univ.)

[Organometallics 25, 560–562 (2006)]

The reaction of the group 9 bis(hydrosulfido) complexes $[Cp*M(SH)_2(PMe_3)]$ (M = Rh, Ir) with the group 6 nitrosyl complexes [Cp*M'Cl₂(NO)] (M' = Mo, W) in the presence of NEt3 affords a series of the bis(sulfido)bridged early-late heterobimetallic (ELHB) complexes $[Cp*M(PMe_3)(\mu-S)_2M'(NO)Cp*]$ (M = Rh, Ir; M' = Mo, W). These complexes show one strong IR absorption assignable to the NO stretching around 1500 cm^{-1} . Interestingly, this v(NO) value is 100 cm⁻¹ smaller than that of the mononuclear thiolato complex [Cp*W(NO) (SPh)₂]. This unusual IR absorption is attributable to the influx of electrons to the group 6 metal center through the M(III) \rightarrow M'(II) dative bond. The electron rich nature of the dinuclear complexes is reflected in its reactivities. Upon treatment of the Rh-W complex with MeOTf, the oxygen atom of the terminal nitrosyl ligand is readily methylated to form the methoxyimido complex $[Cp*Rh(PMe_3)(\mu-S)_2W(NOMe)Cp*]^+$, while methylation of the Rh-Mo complex results in S-methylation, giving the methanethiolato complex [Cp*Rh(PMe₃)(µ-SMe)(μ -S)Mo(NO)Cp*]⁺ (Scheme 1).

