Multifunction Integrated Macromolecules for Molecular-Scale Electronics

Research Center for Molecular Scale Nanoscience Division of Molecular Nanoscience

TANAKA, Shoji

Assistant Professor

Recently a single electron tunnel (SET) device has attracted much attention due to the growing demand for ultra-lowpower device. A SET device manipulates an electron by means of one-by-one electron transfer, resulting in ultimately low power consumption. However, for room temperature operation, the size of SET device must be as small as a few nm to overcome the thermal fluctuation problems. The process size of a few nm is out of the range of conventional micro-technology. In this project, to establish an innovative fabrication process for SET device systems, we have been developing step-wise synthetic protocols for molecule-based singleelectron tunnel devices (MOSET) and circuit.

Scheme 1. Step-wise Synthetic Route to Single-electron Transistor.

1. Molecular Design for Mono-Molecular Integration of Basic Components of Single-Electron Devices

Single electron devices comprise three key elements: Coulomb island, tunnel junction, and capacitive junction. To integrate these elements in a single molecule, we have designed versatile molecular building blocks (1-3). Using these building blocks, we have synthesized the first trial model of a "monomolecular" single-electron transistor (Scheme 1). Although there are a lot of issues to be solved, this is the first step to realize the practical MOSET device systems based on monomolecular integration strategy.

2. Mechanism of Electrical Conduction through Single Oligothiophene Molecules¹⁾

The temperature dependence of electrical conductance of oligothiophene molecules with the length of 2.2 nm (5-mer), 5.6 nm (14-mer) and 6.7 nm (17-mer) was measured by break junction method with a scanning tunneling microscope to clarify the charge transport mechanisms. The conductance of 17-mer molecule increased exponentially with temperature whereas the conductance of 5-mer and 14-mer molecules did not change. These results indicate that the dominant charge transport mechanism changed from tunneling to thermally activated hopping at molecular length around 6.7 nm (17-mer).

Reference

SK. Lee, R. Yamada, H. Kumazawa, H. Tada and S. Tanaka, *Funct. Mater. Lett.* 3, 245–248 (2010).