Synthetic Inorganic and Organometallic Chemistry of Transition Metals

Research Center of Integrative Molecular Systems Division of Functional Molecular Systems

WIRAHASHI, Tetsuro Professor [mura@ims.ac.jp]	 Education 1995 B.S. Osaka University 1999 Ph.D. Osaka University Professional Employment 1999 Assistant Professor, Osaka University 2003 JSPS Fellow for Research Abroad, Massachusetts Institute of Technology 2005 JST-PRESTO Researcher 2007 Associate Professor, Osaka University 2010 JST-PRESTO Researcher 2012 Professor, Institute for Molecular Science Professor, The Graduate University for Advanced Studies Awards 2007 The Chemical Society of J apan (CSJ) A ward for Young Chemists 2007 The Japan Society of Coordination Chemistry (JSCC) Award for Young Chemists 2008 The Young Scientists' Prize, The Commendation for Science and Technology by the Minister of Education, Culture, Sports, and Technology, Japan 2010 Dalton Lectureship Award, Royal Society of Chemistry 	Post-Doctoral Fellow HORIUCHI, Shinnosuke Visiting Scientist LI, Bin Bin* Graduate Student KIMURA, Seita [†] ISHIKAWA, Yuki MASAI, Kohei TERAMOTO, Masahiro YAMASHITA, Mitsuki Technical Fellow KAWAMATA, Shiori OKUNI, Yasuko FUJIKURA, Keika Secretary TANIWAKE, Mayuko NOGAWA, Kyoko
Keywords Co	ordination Chemistry, Organometallic Chemistry, Mechanism of Catalysis	

Our research focuses mainly on two topics in inorganic and organometallic chemistry: i) Synthesis and structural elucidation of a new class of transition metal complexes; ii) elucidation of reaction patterns and mechanism of reactive transition metal complexes. Novel synthetic methods are developed to realize a new class of transition metal complexes. Some transition metal complexes are converted to more reactive forms, and their reaction mechanisms are elucidated. The research leads to development of fundamental concepts of transition metal chemistry.

The "sandwich" structure is one of the fundamental structural motifs for transition metal complexes. Most of sandwich complexes contain a mononuclear metal moiety between parallel cyclic unsaturated hydrocarbon ligands. On the other hand, it had been difficult to synthesize a stable sandwich complex in which a metal assembly are sandwiched between two cyclic unsaturated hydrocarbons. Recently, our group discovered that multinuclear sandwich complexes exist as the stable and isolable molecules (Figure 1). These findings expand the structural concept of sandwich compounds from

Selected Publications

- T. Murahashi, T. Uemura and H. Kurosawa, "Perylene Tetrapalladium Sandwich Complexes," *J. Am. Chem. Soc.* 125, 8436– 8437 (2003).
- T. Murahashi, M. Fujimoto, M. Oka, Y. Hashimoto, T. Uemura, Y. Tatsumi, Y. Nakao, A. Ikeda, S. Sakaki and H. Kurosawa "Discrete Sandwich Compounds of Monolayer Palladium Sheets," *Science* 313, 1104–1107 (2006).
- T. Murahashi, R. Inoue, K. Usui and S. Ogoshi, "Square Tetra-

zero-dimension to one- and two dimensions, and provide a new opportunity to develop a new class of organo-metal cluster compounds. Multinuclear sandwich complexes showed unique chemical properties stemming from their (π -conjugated unsaturated hydrocarbon)-(multinuclear metal) hybrid structures.

Member Assistant Professor

YAMAMOTO, Koji

Figure 1. The concept of dimensionally extended sandwich structures and some examples of the multinuclear sandwich complexes.

palladium Sheet Sandwich Complexes: Cyclononatetraenyl as a Versatile Face-Capping Ligand," *J. Am. Chem. Soc.* **131**, 9888–9889 (2009).

• T. Murahashi, K. Shirato, A. Fukushima, K. Takase, T. Suenobu, S. Fukuzumi, S. Ogoshi and H. Kurosawa, "Redox-Induced Reversible Metal Assembly through Translocation and Reversible Ligand Coupling in Tetranuclear Metal Sandwich Frameworks," *Nat. Chem.* **4**, 52–58 (2012).

1. Chemistry of Multinuclear Sandwich Complexes

Synthesis and Structural Elucidation of Bis-Cyc looctatetraene Trimetal Sandwich Complexes

Our group has made research efforts to establish the generality of the metal sheet sandwich compounds. We have shown that several unsaturated hydrocarbon ligands such as [2.2]paracyclophane, cycloheptatriene, cycloheptatrienyl, and some polycyclic arenes behave as the excellent binders for triangular trimetal sheets.^{2–6)} Particularly, it has been shown that seven-membered unsaturated hydrocarbons, *i.e.*, tropylium and cycloheptatriene, serve as an excellent facial μ_3 -binder for the triangular M₃L₃ core (M = Pd, Pt) (Scheme 1). However, it has not been verified whether larger π -conjugated carbocycles are able to form a simple triangular trimetal sandwich complex.

Scheme 1. The tropylium- and cycloheptatriene sandwich complexes.

1,3,5,7-Cyclooctatetraene (COT) is a potentially useful eight-membered carbocyclic ligand for metal sheet sandwich complexes, in view of its greater number of C=C bonds and a flexible electron-donating/back-donating nature. A recent finding by Grubbs *et al.* represents the versatility of the COT ligand, *i.e.*, a homoleptic trimetal tris-COT complex, Fe₃(μ -COT)₃, was isolated through a catalytic method.⁷) Here, we successfully synthesized the first discrete bis-COT trimetal sandwich complexes.⁸)

The bis-cyclooctatetraene Pd₃ sandwich complex [Pd₃(μ_3 -C₈H₈)₂L][BF₄]₂ (**1-CH₃CN**) was obtained by the reaction of [Pd₂(CH₃CN)₆][BF₄]₂ and Pd₂(dba)₃ in the presence of cyclooctatetraene (COT), followed by treatment with CH₃CN (eq. 1). Recrystallization in an aerobic condition gave a single crystal of **1-H₂O**. The structure of **1-H₂O** was determined by X-ray diffraction analysis. The cyclooctatetraene ligands coordinate to an isosceles Pd₃ triangle (Pd1–Pd2 = 2.7321(8) Å; Pd2–Pd3 = 2.7359(8) Å; Pd1…Pd3 = 3.0604(8) Å) through a μ_3 - η^3 : η^2 : η^3 mode. The sandwich structure seems to be related with that of a diphenyloctatetraene Pd₃ chain sandwich complex [Pd₃{Ph(CH=CH)₄Ph₂]²⁺ which exhibits the same μ_3 - η^3 : η^2 : η^3 coordination mode.⁹

A deep purple PPh₃ complex $[Pd_3(\mu_3-COT)_2(PPh_3)][BF_4]_2$ (1-PPh₃) or a PCy₃ complex $[Pd_3(\mu_3-COT)_2(PCy_3)][BF_4]_2$

(1-PCy₃) was obtained by treatment of 1-CH₃CN with PPh₃ or PCy₃ (1 equiv.). In solution, 1-CH₃CN and 1-PPh₃ showed a sharp singlet NMR signal for C₈H₈ protons or carbons at 25 °C. Lowering the temperature down to -90 °C of the related compound resulted in significant broadening of the resonance for the C₈H₈ protons, suggesting the dynamic fluxional rotation of the cyclooctatetraene ligands on the Pd₃ core.

The reactivity of **1-CH₃CN** with several coordinating substrates were investigated, and the results were summarized in Scheme 2, showing the substitutionally labile nature of the μ_3 -COT ligands in the bis-COT Pd₃ sandwich complex.

Scheme 2. Facile dissociation of the COT ligand in $[Pd_3(\mu_3-C_8H_8)_2 (CH_3CN)][BF_4]_2$ (1-CH₃CN).

2. Reaction Mechanism of Highly Reactive Metal Complexes

One of our main interests is in the elucidation of the reaction patterns and mechanisms of highly reactive transition metal complexes in relevance to catalysis. Synthetic and structural chemistry of the arenes and hetero-arenes transition metal complexes are now ongoing in our laboratory, and several new aspects have been gained recently.^{10,11}

References

- For the first report on the metal chain sandwich complexes: T. Murahashi *et al., J. Am. Chem. Soc.* **121**, 10660–10661 (1999).
- For the first report on the metal sheet sandwich complexes: T. Murahashi *et al.*, *Science* **313**, 1104–1107 (2006).
- 3) T. Murahashi et al., Angew. Chem., Int. Ed. 46, 5440-5443 (2007).
- 4) T. Murahashi et al., J. Am. Chem. Soc. 130, 8586–8587 (2008).
- 5) T. Murahashi et al., Chem. Sci. 2, 117-122 (2011).
- 6) T. Murahashi et al., Chem. -Eur. J. 18, 8886-8890 (2012).
- 7) V. Lavallo and R. H. Grubbs, Science 326, 559-562 (2009).
- T. Murahashi, S. Kimura, K. Takase, T. Uemura, S. Ogoshi and K. Yamamoto, *Chem. Commun.* 50, 820–822 (2014).
- 9) T. Murahashi et al., J. Am. Chem. Soc. 124, 14288-14289 (2002).
- 10) T. Murahashi et al., J. Am. Chem. Soc. 133, 14908-14911 (2011).
- 11) T. Murahashi et al., Chem. Commun. 49, 4310–4312 (2013).

* IMS International Internship Program

† carrying out graduate research on Cooperative Education Program of IMS with Osaka University